scholarly journals Numerical Study on Performance Characteristics of Draft Tube of Mixed Flow Hydraulic Turbine

2012 ◽  
Vol 10 ◽  
pp. 48-52
Author(s):  
Ruchi Khare ◽  
Vishnu Prasad

Draft tube is an important component of the hydraulic reaction turbine and affects the overall performance of turbine to a large extent. The flow inside the draft tube is complex because of the whirling flow coming out of runner and its diffusion along the draft tube. The kinetic energy coming out of runner is recovered in draft tube and part of recovery meets the losses. In the present work, the computational fluid dynamics (CFD) has been used for flow simulation in complete mixed flow Francis turbine for performance analysis for energy recovery, losses and flow pattern in an elbow draft tube used in Francis turbine at different operating conditions. The overall performance of the turbine at some typical operating regimes is validated with the experimental results and found to be in close comparison.DOI: http://dx.doi.org/10.3126/hn.v10i0.7103 Hydro Nepal Vol.10 January 2012 48-52

2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


Author(s):  
Cuilin Liao ◽  
Fujun Wang ◽  
Xiaoqin Li ◽  
Yuliang Zhu

The pressure fluctuation caused by swirling flow in draft tube is one of the main reasons of vibration in hydraulic turbine. It directly affects the steady operation of hydraulic turbine unit. The pressure fluctuation in draft tube of a large Francis turbine can’t be obtained accurately by similarity law from model test, and prototype test is difficult to carry out and costs too much. Therefore, it is necessary to predict pressure fluctuation in draft tube numerically and provide scientific reference for mitigating and suppressing pressure fluctuation. This paper describes a numerical study of unsteady flow in the draft tube of a large Francis turbine in a Hydropower Station of China by using the Reynolds averaged Navier–Stokes (RANS) approach with a Reynolds stress transport model (RSM), validating the numerical results against experimental data. The numerical results successfully represent the vortex rope. The pressure fluctuation patterns in different parts of the draft tube including the cone, elbow and diffuser are analyzed. The pressure fluctuation in the cone and elbow is relative steady, and it has an obvious dominant frequency which is approximately 0.28 and 0.3 times of the runner rotational frequency. These results show very good agreement with experiments. The largest pressure amplitude appears in the draft tube cone downstream side and the draft elbow inside. The pressure fluctuation in the diffuser is stochastic, and the amplitude is small. Additionally, the pressure distributions on the horizontal computational section of the draft tube are analyzed.


1970 ◽  
Vol 7 ◽  
pp. 60-64 ◽  
Author(s):  
Ruchi Khare ◽  
Vishnu Prasad Prasad ◽  
Sushil Kumar

The testing of physical turbine models is costly, time consuming and subject to limitations of laboratory setup to meet International Electro technical Commission (IEC) standards. Computational fluid dynamics (CFD) has emerged as a powerful tool for funding numerical solutions of wide range of flow equations whose analytical solutions are not feasible. CFD also minimizes the requirement of model testing. The present work deals with simulation of 3D flow in mixed flow (Francis) turbine passage; i.e., stay vane, guide vane, runner and draft tube using ANSYS CFX 10 software for study of flow pattern within turbine space and computation of various losses and efficiency at different operating regimes. The computed values and variation of performance parameters are found to bear close comparison with experimental results.Key words: Hydraulic turbine; Performance; Computational fluid dynamics; Efficiency; LossesDOI: 10.3126/hn.v7i0.4239Hydro Nepal Journal of Water, Energy and EnvironmentVol. 7, July, 2010Page: 60-64Uploaded date: 31 January, 2011


2019 ◽  
Vol 11 (5) ◽  
pp. 1423 ◽  
Author(s):  
Md Rakibuzzaman ◽  
Hyoung-Ho Kim ◽  
Kyungwuk Kim ◽  
Sang-Ho Suh ◽  
Kyung Kim

Effective hydraulic turbine design prevents sediment and cavitation erosion from impacting the performance and reliability of the machine. Using computational fluid dynamics (CFD) techniques, this study investigated the performance characteristics of sediment and cavitation erosion on a hydraulic Francis turbine by ANSYS-CFX software. For the erosion rate calculation, the particle trajectory Tabakoff–Grant erosion model was used. To predict the cavitation characteristics, the study’s source term for interphase mass transfer was the Rayleigh–Plesset cavitation model. The experimental data acquired by this study were used to validate the existing evaluations of the Francis turbine. Hydraulic results revealed that the maximum difference was only 0.958% compared with the CFD data, and 0.547% compared with the experiment (Korea Institute of Machinery and Materials (KIMM)). The turbine blade region was affected by the erosion rate at the trailing edge because of their high velocity. Furthermore, in the cavitation–erosion simulation, it was observed that abrasion propagation began from the pressure side of the leading edge and continued along to the trailing edge of the runner. Additionally, as sediment flow rates grew within the area of the attached cavitation, they increased from the trailing edge at the suction side, and efficiency was reduced. Cavitation–sand erosion results then revealed a higher erosion rate than of those of the sand erosion condition.


Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations are conducted to characterize the spatial and temporal characteristics of the flow field inside a Francis turbine operating in the excess load regime. A high-fidelity Large Eddy Simulation (LES) turbulence model is applied to investigate the flow-induced pressure fluctuations in the draft tube of a Francis Turbine. Probes placed alongside the wall and in the center of the draft tube measure the pressure signal in the draft tube, the pressure over the turbine blades, and the power generated to compare against previous studies featuring design point and partial load operating conditions. The excess load is seen during Francis turbines in order to satisfy a spike in the electrical demand. By characterizing the flow field during these conditions, we can find potential problems with running the turbine at excess load and inspire future studies regarding mitigation methods. Our studies found a robust low-pressure region on the edges of turbine blades, which could cause cavitation in the runner region, which would extend through the draft tube, and high magnitude of pressure fluctuations were observed in the center of the draft tube.


2018 ◽  
Vol 8 (12) ◽  
pp. 2505 ◽  
Author(s):  
Jean Decaix ◽  
Vlad Hasmatuchi ◽  
Maximilian Titzschkau ◽  
Cécile Münch-Alligné

Due to the integration of new renewable energies, the electrical grid undergoes instabilities. Hydroelectric power plants are key players for grid control thanks to pumped storage power plants. However, this objective requires extending the operating range of the machines and increasing the number of start-up, stand-by, and shut-down procedures, which reduces the lifespan of the machines. CFD based on standard URANS turbulence modeling is currently able to predict accurately the performances of the hydraulic turbines for operating points close to the Best Efficiency Point (BEP). However, far from the BEP, the standard URANS approach is less efficient to capture the dynamics of 3D flows. The current study focuses on a hydraulic turbine, which has been investigated at the BEP and at the Speed-No-Load (SNL) operating conditions. Several “advanced” URANS models such as the Scale-Adaptive Simulation (SAS) SST k - ω and the BSL- EARSM have been considered and compared with the SST k - ω model. The main conclusion of this study is that, at the SNL operating condition, the prediction of the topology and the dynamics of the flow on the suction side of the runner blade channels close to the trailing edge are influenced by the turbulence model.


Author(s):  
H. W. Oh ◽  
K-Y Kim

The mean streamline analysis using the empirical loss correlations has been developed for performance prediction of industrial mixed-flow fan impellers in the present study. New simple, but effective, models for the additional Euler input work characteristic and a suction recirculation loss due to internal flow reversal under the low flowrate conditions are proposed in this paper. Comparison of overall performance predictions with six sets of test data of mixed-flow fans is accomplished to demonstrate the accuracy of the proposed models. Predicted performance curves by the present set of loss models agree fairly well with experimental data for a variety of mixed-flow fan impellers over the entire operating conditions. The prediction method presented herein can be used efficiently in the conceptual design phase of mixed-flow fan impellers.


Author(s):  
Thomas M. Leonard ◽  
Stephen Spence ◽  
Juliana Early ◽  
Dietmar Filsinger

Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.


2014 ◽  
Vol 81 (6) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.


2006 ◽  
Vol 129 (2) ◽  
pp. 146-158 ◽  
Author(s):  
Gabriel Dan Ciocan ◽  
Monica Sanda Iliescu ◽  
Thi Cong Vu ◽  
Bernd Nennemann ◽  
François Avellan

The dynamics of the rotating vortex taking place in the discharge ring of a Francis turbine for partial flow rate operating conditions and cavitation free conditions is studied by carrying out both experimental flow survey and numerical simulations. 2D laser Doppler velocimetry, 3D particle image velocimetry, and unsteady wall pressure measurements are performs to investigate thoroughly the velocity and pressure fields in the discharge ring and to give access to the vortex dynamics. Unsteady RANS simulation are performed and compared to the experimental results. The computing flow domain includes the rotating runner and the elbow draft tube. The mesh size of 500,000 nodes for the 17 flow passages of the runner and 420,000 nodes for the draft tube is optimized to achieve reasonable CPU time for a good representation of the studied phenomena. The comparisons between the detailed experimental flow field and the CFD solution yield to a very good validation of the modeling of the draft tube rotating vortex and, then, validate the presented approach for industrial purpose applications.


Sign in / Sign up

Export Citation Format

Share Document