Experimental Observations of Flow Over an Airfoil in a Confined Duct

Author(s):  
James Crawford ◽  
A. M. Birk

The flow around a NACA 0020 airfoil strut placed in the centre of a rectangular duct has been studied. The performance of the strut was characterized in terms of its effect on the mean flow, as well as in terms of overall losses. It was shown that the main influences of increasing the confined mixing length downstream of the airfoil wake were to reduce the total system dump loss (kinetic energy loss) through the use of a Carnot diffuser, and to slightly increase the wake spreading rate. In addition to creating a reference dataset for CFD comparison and validation, some phenomenon were particularly identified for future CFD investigation. It was shown that there may be some benefit to adjusting the turbulent Prandtl number for Turbulent Kinetic Energy during CFD simulations of this same problem. It was also shown that studying the particular effects of the Carnot diffuser on the development and migration of the wall-airfoil interface vortices would give useful insight into the physical mechanisms driving this change in performance.

2015 ◽  
Vol 45 (9) ◽  
pp. 2294-2314 ◽  
Author(s):  
Shane Elipot ◽  
Lisa M. Beal

AbstractThe Agulhas Current intermittently undergoes dramatic offshore excursions from its mean path because of the downstream passage of mesoscale solitary meanders or Natal pulses. New observations and analyses are presented of the variability of the current and its meanders using mooring observations from the Agulhas Current Time-Series Experiment (ACT) near 34°S. Using a new rotary EOF method, mesoscale meanders and smaller-scale meanders are differentiated and each captured in a single mode of variance. During mesoscale meanders, an onshore cyclonic circulation and an offshore anticyclonic circulation act together to displace the jet offshore, leading to sudden and strong positive conversion of kinetic energy from the mean flow to the meander via nonlinear interactions. Smaller meanders are principally represented by a single cyclonic circulation spanning the entire jet that acts to displace the jet without extracting kinetic energy from the mean flow. Synthesizing in situ observations with altimeter data leads to an account of the number of mesoscale meanders at 34°S: 1.6 yr−1 on average, in agreement with a recent analysis by Rouault and Penven (2011) and significantly less than previously understood. The links between meanders and the arrival of Mozambique Channel eddies or Madagascar dipoles at the western boundary upstream are found to be robust in the 20-yr altimeter record. Yet, only a small fraction of anomalies arriving at the western boundary result in meanders, and of those, two-thirds can be related to ring shedding. Most Agulhas rings are shed independently of meanders.


2014 ◽  
Vol 755 ◽  
pp. 397-428 ◽  
Author(s):  
Peng Wang ◽  
James C. McWilliams ◽  
Claire Ménesguen

AbstractThe linear instability of several rotating, stably stratified, interior vertical shear flows $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\overline{U}(z)$ is calculated in Boussinesq equations. Two types of baroclinic, ageostrophic instability, AI1 and AI2, are found in odd-symmetric $\overline{U}(z)$ for intermediate Rossby number ($\mathit{Ro}$). AI1 has zero frequency; it appears in a continuous transformation of the unstable mode properties between classic baroclinic instability (BCI) and centrifugal instability (CI). It begins to occur at intermediate $\mathit{Ro}$ values and horizontal wavenumbers ($k,l$) that are far from $l= 0$ or $k = 0$, where the growth rate of BCI or CI is the strongest. AI1 grows by drawing kinetic energy from the mean flow, and the perturbation converts kinetic energy to potential energy. The instability AI2 has inertia critical layers (ICL); hence it is associated with inertia-gravity waves. For an unstable AI2 mode, the coupling is either between an interior balanced shear wave and an inertia-gravity wave (BG), or between two inertia-gravity waves (GG). The main energy source for an unstable BG mode is the mean kinetic energy, while the main energy source for an unstable GG mode is the mean available potential energy. AI1 and BG type AI2 occur in the neighbourhood of $A-S= 0$ (a sign change in the difference between absolute vertical vorticity and horizontal strain rate in isentropic coordinates; see McWilliams et al., Phys. Fluids, vol. 10, 1998, pp. 3178–3184), while GG type AI2 arises beyond this condition. Both AI1 and AI2 are unbalanced instabilities; they serve as an initiation of a possible local route for the loss of balance in 3D interior flows, leading to an efficient energy transfer to small scales.


2015 ◽  
Vol 782 ◽  
pp. 333-355 ◽  
Author(s):  
Maarten van Reeuwijk ◽  
John Craske

We discuss energetic restrictions on the entrainment coefficient${\it\alpha}$for axisymmetric jets and plumes. The resulting entrainment relation includes contributions from the mean flow, turbulence and pressure, fundamentally linking${\it\alpha}$to the production of turbulence kinetic energy, the plume Richardson number$\mathit{Ri}$and the profile coefficients associated with the shape of the buoyancy and velocity profiles. This entrainment relation generalises the work by Kaminskiet al. (J. Fluid Mech., vol. 526, 2005, pp. 361–376) and Fox (J. Geophys. Res., vol. 75, 1970, pp. 6818–6835). The energetic viewpoint provides a unified framework with which to analyse the classical entrainment models implied by the plume theories of Mortonet al.(Proc. R. Soc. Lond.A, vol. 234, 1955, pp. 1–23) and Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1954, pp. 144–157). Data for pure jets and plumes in unstratified environments indicate that to first order the physics is captured by the Priestley and Ball entrainment model, implying that (1) the profile coefficient associated with the production of turbulence kinetic energy has approximately the same value for pure plumes and jets, (2) the value of${\it\alpha}$for a pure plume is roughly a factor of$5/3$larger than for a jet and (3) the enhanced entrainment coefficient in plumes is primarily associated with the behaviour of the mean flow and not with buoyancy-enhanced turbulence. Theoretical suggestions are made on how entrainment can be systematically studied by creating constant-$\mathit{Ri}$flows in a numerical simulation or laboratory experiment.


2009 ◽  
Vol 638 ◽  
pp. 423-452 ◽  
Author(s):  
EMMANUEL MIGNOT ◽  
D. HURTHER ◽  
E. BARTHELEMY

This study examines the structure of shear stress and turbulent kinetic energy (TKE) flux across the roughness layer of a uniform, fully rough gravel-bed channel flow (ks+ ≫ 100, δ/k = 20) using high-resolution acoustic Doppler velocity profiler measurements. The studied gravel-bed roughness layer exhibits a complex random multi-scale roughness structure in strong contrast with conceptualized k- or d-type roughness in standard rough-wall flows. Within the roughness layer, strong spatial variability of all time-averaged flow quantities are observed affecting up to 40% of the boundary layer height. This variability is attributed to the presence of bed zones with emanating bed protuberances (or gravel clusters) acting as local flow obstacles and bed zones of more homogenous roughness of densely packed gravel elements. Considering the strong spatial mean flow variability across the roughness layer, a spatio-temporal averaging procedure, called double averaging (DA), has been applied to the analysed flow quantities. Three aspects have been addressed: (a) the DA shear stress and DA TKE flux in specific bed zones associated with three classes of velocity profiles as previously proposed in Mignot, Barthélemy & Hurther (J. Fluid Mech., vol. 618, 2009, p. 279), (b) the global and per class DA conditional statistics of shear stress and associated TKE flux and (c) the contribution of large-scale coherent shear stress structures (LC3S) to the TKE flux across the roughness layer. The mean Reynolds and dispersive shear structure show good agreement between the protuberance bed zones associated with the S-shape/accelerated classes and recent results obtained in standard k-type rough-wall flows (Djenidi et al., Exp. Fluids, vol. 44, 2008, p. 37; Pokrajac, McEwan & Nikora, Exp. Fluids, vol. 45, 2008, p. 73). These gravel-bed protuberances act as local flow obstacles inducing a strong turbulent activity in their wake regions. The conditional statistics show that the Reynolds stress contribution is fairly well distributed between sweep and ejection events, with threshold values ranging from H = 0 to H = 8. However, the TKE flux across the roughness layer primarily results from the residual shear stress between ejection and sweep of very high magnitude (H = 10–20) and of small turbulent scale. Although LC3S are seen to penetrated the interfacial roughness layer, their TKE flux contribution is found to be negligible compared to the very energetic small-scale sweep events. These sweeps are dominantly produced in the bed zones of local gravel protuberances where the velocity profiles are inflexional of S-shape type and the mean flow properties are of mixing-layer flow type as previously shown in Mignot et al. (2009).


2017 ◽  
Vol 47 (7) ◽  
pp. 1675-1683 ◽  
Author(s):  
Dujuan Kang ◽  
Enrique N. Curchitser

AbstractThe seasonal cycles of the mean kinetic energy (MKE) and eddy kinetic energy (EKE) are compared in an idealized flow as well as in a realistic simulation of the Gulf Stream (GS) region based on three commonly used definitions: orthogonal, nonorthogonal, and moving-average filtered decompositions of the kinetic energy (KE). It is shown that only the orthogonal KE decomposition can define the physically consistent MKE and EKE that precisely represents the KEs of the mean flow and eddies, respectively. The nonorthogonal KE decomposition gives rise to a residual term that contributes to the seasonal variability of the eddies, and therefore the obtained EKE is not precisely defined. The residual term is shown to exhibit more significant seasonal variability than EKE in both idealized and realistic GS flows. Neglecting its influence leads to an inaccurate evaluation of the seasonal variability of both the eddies and the total flow. The decomposition using a moving-average filter also results in a nonnegligible residual term in both idealized and realistic GS flows. This type of definition does not ensure conservation of the total KE, even if taking into account the residual term. Moreover, it is shown that the annual cycles of the three types of EKEs or MKEs have different phases and amplitudes. The local differences of the EKE cycles are very prominent in the GS off-coast domain; however, because of the spatial inhomogeneity, the area-mean differences may not be significant.


In this problem a mean turbulent shear layer originally exists, homogeneous in the streamwise direction, formed perhaps by previous instabilities, but in equilibrium with the fine-grained turbulence. At a given time, a large eddy of a fixed horizontal wavenumber is initiated. We study the subsequent time development of the non-equilibrium interactions between the three components of flow as they adjust towards ultimate simultaneous equilibrium, using the integrated energy-balance conservation equations to derive the amplitude equations. This necessarily involves the usual averaging procedure and a conditional or phase-averaging procedure by which the large structure motion is educed from the total fluctuations. In general, the mean flow growth is due to the energy transfer to both fluctuating components, the large eddy gains energy from the mean motion and exchanges energy with the fine-grained turbulence, while the fine-grained turbulence gains energy from the mean flow and exchanges with the large eddy and converts its energy to heat through viscous dissipation of the smallest scales. The closure problem is obtained via the shape assumptions which enter into the interaction integrals. The situation in which the fine-grained turbulent kinetic energy production and viscous dissipation are in local balance is considered, the displacement from equilibrium being due only to the energy transfer from the large eddy. The large eddy shape is taken to be two-dimensional, instability-wavelike, with its vorticity axis perpendicular to the direction of the mean outer stream. Prior to averaging, detailed but approximate calculations of the wave-induced turbulent Reynolds stresses are obtained; the product of these stresses with the appropriate large-eddy rates of strain give the energy transfer mechanism between the two disparate scales of fluctuations. Coupled, nonlinear amplitude or energy density equations for the three components of motion are obtained, the coefficients of which are the interaction integrals guided by the shape assumptions. It is found that for the special case of parallel flow, the energy of the large eddy first undergoes a hydrodynamic-instability type of amplification but eventually decays due to the energy transfer to the fine-grained turbulence, while the turbulent kinetic energy is displaced from an original level of equilibrium to a new one because of the ability of the large eddy to negotiate an indirect energy transfer from the mean flow. For the growing shear layer, approximate considerations show that if the mechanism of energy transfer from the large to the small scale is eventually weakened by the shear layer growth compared to the large-eddy production mechanism so that the amplification and decay process repeats, ‘bursts’ of the remnant of the same large eddy will occur repeatedly until an ultimate equilibrium is reached among the three interacting components of motion. However, for the large eddy whose wavenumber corresponds to that of the initially most amplified case, the ‘bursting’ phenomenon is much less pronounced and equilibrium is very nearly reached at the end of the very first ‘burst’.


2015 ◽  
Vol 774 ◽  
pp. 324-341 ◽  
Author(s):  
J. C. Vassilicos ◽  
J.-P. Laval ◽  
J.-M. Foucaut ◽  
M. Stanislas

The spectral model of Perryet al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallaset al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Somnath Roy ◽  
Sumanta Acharya

Flow inside an unbaffled Rushton-impeller stirred tank reactor (STR) is perturbed using a time dependent impeller rotational speed. Large eddy simulation (LES) revealed that the perturbation increased the width of impeller jet compared to the constant rotational speed cases. The turbulent fluctuations were also observed to be enhanced in the perturbed flow and showed higher values of production and convection of turbulent kinetic energy. Changes in the mean flow-field during the perturbation cycle are investigated. The trailing edge vortices were observed to propagate farther both in the radial and azimuthal direction in the perturbed case. Production of turbulent kinetic energy is observed to be related to the breakup of the impeller jet in the perturbed case. Dissipation of turbulent kinetic energy is augmented due to the perturbation ensuring a better mixing at the molecular scale.


2019 ◽  
Vol 77 (1) ◽  
pp. 315-336
Author(s):  
Saiprasanth Bhalachandran ◽  
Daniel R. Chavas ◽  
Frank D. Marks Jr. ◽  
S. Dubey ◽  
A. Shreevastava ◽  
...  

Abstract Our collective understanding of azimuthally asymmetric features within the coherent structure of a tropical cyclone (TC) continues to improve with the availability of more detailed observations and high-resolution model outputs. However, a precise understanding of how these asymmetries impact TC intensity changes is lacking. Prior attempts at investigating the asymmetric impacts follow a mean–eddy partitioning that condenses the effect of all the asymmetries into one term and fails to highlight the differences in the role of asymmetries at different scales. In this study, we present a novel energetics-based approach to analyze the asymmetric impacts at multiple length scales during periods of rapid intensity changes. Using model outputs of TCs under low and high shear, we compute the different energy pathways that enhance/suppress the growth of multiscale asymmetries in the wavenumber (WN) domain. We then compare and contrast the energetics of the mean-flow field (WN 0) with that of the persistent, coherent vortex-scale asymmetric structures (WNs 1 and 2) and the more local, transient, sub-vortex-scale asymmetries (WNs ≥ 3). We find in our case studies that the dominant mechanisms of growth/decay of the asymmetries are the baroclinic conversion from available potential to kinetic energy at individual scales of asymmetries and the transactions of kinetic energy between the asymmetries of various length scales, rather than the barotropic mean–eddy transactions as is typically assumed. Our case study analysis further shows that the growth/decay of asymmetries is largely independent of the mean. Certain aspects of eddy energetics can potentially serve as early-warning indicators of TC rapid intensity changes.


Author(s):  
Thomas Hofmeister ◽  
Thomas Sattelmayer

Abstract This paper presents numerical investigations of the amplitude-dependent stability behavior of thermoacoustic oscillations at screech level frequencies in a lean-premixed, swirl-stabilized, lab-scale gas turbine combustor. A hybrid Computational Fluid Dynamics / Computational AeroAcoustics (CFD / CAA) approach is applied to individually compute thermoacoustic damping and driving rates for various acoustic amplitude levels at the combustors' first transversal (T1) eigenfrequency. Forced CFD simulations with the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations mimic the real combustor's rotating T1 eigenmode. An increase of the forcing amplitude over time allows observation of the amplitude-dependent flow field and flame evolution. In accordance with measured OH*-chemiluminescence images, a pulsation amplitude-dependent flame contraction is reproduced in the CFD simulations. At several amplitude levels, period-averaged flow fields are then denoted as reference states, which serve as inputs for the CAA part. There, eigenfrequency simulations with linearized flow equations are performed with the Finite Element Method (FEM). The outcomes are damping and driving rates as a response to the amplitude-dependency of the mean flow field. It is found that driving due to flame-acoustics interactions governs a weak amplitude-dependency, which agrees with experimentally based studies at the authors' institute. This disqualifies the perception of heat release saturation as the root-cause for limit-cycle oscillations in this high-frequency thermoacoustic system. Instead, significantly increased dissipation due to the interaction of acoustically induced vorticity perturbations with the mean flow is identified, which may explain the formation of a limit-cycle.


Sign in / Sign up

Export Citation Format

Share Document