A Preliminary Design System for Turbine Discs

Author(s):  
Yannick Ouellet ◽  
François Garnier ◽  
François Roy ◽  
Hany Moustapha

In order to improve product development cycle, design engineers use multi-disciplinary analysis tools which allow better productivity. This paper covers the development of new tools to improve the preliminary design phase of turbine disc, being a critical part of aircraft engines. First, a new single platform D&A (Design & Analysis) tool integrating commercial CAD (Computer Aided Design) and FEA (Finite Element Analysis) software processing in batch mode is presented. This integrated architecture leads to a real improvement enabling a cohesive single integrated simulation environment that offers significant time reduction on user manipulation and execution. An optimization of disc geometry is then performed by using different optimization algorithms and configurations for a given disc parameterized model. The results show potential improvement over the current preliminary rotor discs for life and burst limited design. Finally, optimal curves obtained by developing HPT (High Pressure Turbine) disc reference charts, indicate how to get the minimum weight for given mechanical performance without running any structural analysis. These new tools supporting disc design have allowed improvement of disc life and durability leading to reduction of preliminary design phase duration.

2017 ◽  
Vol 0 (0) ◽  
Author(s):  
Yannick Ouellet ◽  
Christian Savaria ◽  
François Roy ◽  
Hany Moustapha ◽  
François Garnier

AbstractIn order to improve product development cycle, design engineers use multidisciplinary analysis tools which allow for better productivity. This paper covers the development of new tools to improve the preliminary design phase of turbine disc, being a critical part of aircraft engines. First, a new single platform D&A (Design & Analysis) tool integrating commercial CAD (Computer Aided Design) and FEA (Finite Element Analysis) software processing in batch mode is presented. This integrated architecture leads to a real improvement, enabling a cohesive single integrated simulation environment that offers significant time reduction on user manipulation and execution. An optimization of disc geometry is then performed by using different optimization algorithms and configurations for a given disc parameterized model. The results show potential improvement over the current preliminary rotor discs for life and burst limited design. Finally, optimal curves obtained by developing HPT (High Pressure Turbine) disc reference charts, indicate how to get the minimum weight for given mechanical performance without running any structural analysis. These new tools supporting disc design have allowed improvement of disc life and durability leading to a reduction of preliminary design phase duration.


Author(s):  
Abdulhalim Twahir ◽  
François Roy ◽  
Magdy Attia ◽  
Hany Moustapha

A single platform D&A (Design & Analysis) tool is outlined in this paper that allows a user, through a single GUI (Graphical User Interface), to create a turbine rotor fixing as well as analyze the structural integrity of the fixing. This is done through the integration of CAD (Computer Aided Design) and FEA (Finite Element Analysis) software running in batch mode, driven by the GUI. This SPIE (Single Platform Integration Environment) captures the strength of CAD software to create a fully parameterized fixing that is able to model legacy, current designs and provides flexibility to design fixings not yet conceived. Using the automated use of FEA software through a secure and reliable gateway, stress analysis can be performed and the results displayed back to the user through the GUI. This tool provides a significant increase in quality and time savings to design a fixing when compared to the previous design methodologies. What used to take hours to design and analyze through the use of isolated specialist built and owned tools with little communication between them and non-ideal data management, now takes minutes; a reduction of up to 10 fold in the time taken.


Author(s):  
P. Pathak ◽  
D. Dzhurinskiy ◽  
A. Elkin ◽  
P. Shornikov ◽  
S. Dautov ◽  
...  

Abstract The abradable coatings had significantly enhanced turbomachinery performance by acting as a sacrificial seal between rotating blades and stationary casing. Further improvement in seal design to meet the higher energy demand and increase the service time has been the key challenges to solve in the gas turbine industry. Honeycomb seals have become the industry standard clearance seal technique due to their unique design and high structural strength with minimum weight. The present study proposes a concept to form a thermal shock resistance structure to achieve higher temperature capability and improve the reliability of abradable seal structures. A cavity layer of honeycomb seal structure made of SS 321 alloy was coated with advanced high-temperature ZrO2+7.5%Y2O3+4% polyester seal material using TriplexPro-210 plasma spray system. The integrity of a seal structure was assessed by a cross-sectional analysis and evaluation of the coating microstructure. Additionally; the microhardness test was performed to estimate coating fracture toughness; and Object-Oriented Finite Element analysis was used to assess its thermo-mechanical performance. The concept proposed in this study should be further validated to develop the most capable innovative technology for advanced gas turbine abradable seal structures.


Author(s):  
Christian Noon ◽  
Ruqin Zhang ◽  
Eliot Winer ◽  
Jim Oliver ◽  
Brian Gilmore ◽  
...  

Currently, new product concepts are evaluated by developing detailed virtual models with Computer Aided Design (CAD) tools followed by evaluation analyses (e.g., finite element analysis, computational fluid dynamics, etc.). Due to the complexity of these evaluation methods, it is generally not possible to model and analyze each of the ideas generated throughout the conceptual design phase of the design process. Thus, promising ideas may be eliminated based solely on insufficient time to model and assess them. Additionally, the analysis performed is usually of much higher detail than needed for such early assessment. By eliminating the time-consuming CAD complexity, engineers could spend more time evaluating additional concepts. To address these issues, a software framework, the Advanced Systems Design Suite (ASDS), was created. The ASDS incorporates a PC user interface with an immersive virtual reality (VR) environment to ease the creation and assessment of conceptual design prototypes individually or collaboratively in a VR environment. Assessment tools incorporate metamodeling approximations and immersive visualization to evaluate the validity of each concept. In this paper, the ASDS framework and interface along with specifically designed immersive VR assessment tools such as state saving, dynamic viewpoint creation, and animation playback are presented alongside a test case example of redesigning a Boeing 777 in the conceptual design phase.


Author(s):  
Fabian Donus ◽  
Stefan Bretschneider ◽  
Reinhold Schaber ◽  
Stephan Staudacher

The development of every new aero-engine follows a specific process; a sequence of steps or activities which an enterprise employs to conceive, design and commercialize a product. Typically, it begins with the planning phase, where the technology developments and the market objectives are assessed; the output of the planning phase is the input to the conceptual design phase where the needs of the target market are then identified, and alternative product concepts are generated and evaluated, and one or more concepts are subsequently selected for further development based on the evaluation. For aero-engines, the main goal of this phase is therefore to find the optimum engine cycle for a specific set of boundary conditions. This is typically done by conducting parameter studies where every calculation point within the study characterizes one specific engine design. Initially these engines are represented as pure performance cycles. Subsequently, other disciplines, such as Aerodynamics, Mechanics, Weight, Cost and Noise are accounted for to reflect interdisciplinary dependencies. As there is only very little information known about the future engine at this early phase of development, the physical design algorithms used within the various discipline calculations must, by default, be of a simple nature. However, considering the influences among all disciplines, the prediction of the concept characteristics translates into a very challenging and time intensive exercise for the pre-designer. This is contradictory to the fact that there are time constraints within the conceptual design phase to provide the results. Since the early 1970’s, wide scale efforts have been made to develop tools which address the multidisciplinary design of aero-engines within this phase. These tools aim to automatically account for these interdisciplinary dependencies and to decrease the time used to provide the results. Interfaces which control the input and output between the various subprograms and automated checks of the calculation results decrease the possibility of user errors. However, the demands on the users of such tools are expected to even increase, as such systems can give the impression that the calculations are inherently performed correctly. The presented paper introduces MTU’s preliminary design system Modular Performance and Engine Design System (MOPEDS). The results of simple calculation examples conducted using MOPEDS show the influences of the various disciplines on the overall engine system and are used to explain the architecture of such complex design systems.


2012 ◽  
Vol 502 ◽  
pp. 479-484
Author(s):  
Xu Huang ◽  
Quan Yuan ◽  
Hua Cong ◽  
Hai Bo Ma ◽  
Xin Ye

The paper constructs one type of bioprosthetic valve leaflets’ parametric model via computer aided design, a series of accurate parameters of the bioproshtetic heart valve, such as radius of the sutural ring, height of the supporting stent and inclination of the supporting stent, are determined. Numerical simulation is used to determine the effect of one shape design on the mechanical performance of the bioprosthetic valve leaflet. The stress with a shape under the same load is analysed and the thickness of the leaflets 0.5mm and 0.6mm is compared by us. We creat a ellipsoidal surface in accordance with geometrical features. The experimental results of the finite element analysis show that stress distribution of the same bioprosthetic heart valve leaflets with different thickness is different. The maximal primary stress with the thickness of 0.5mm is lower than the others. This work is very helpful to manufacture reasonable shaped valvular leaflets and to prolong the lifetime of the bioprosthetic heart valve.


2013 ◽  
Vol 457-458 ◽  
pp. 536-539
Author(s):  
Quan Yuan ◽  
Xia Zhang ◽  
Jun Zhang ◽  
Xu Huang

In order to investigate the effect of suture density on the dynamic behavior of bioprosthetic heart valve, we establish the spherical leaflets models via computer aided design. Based on the parametric models of the heart valve, four kinds of suture density is analyzed and finite element analysis is used to simulate the mechanical performance of bioprosthetic heart valve. The results show that the stress distributions of the spherical valve leaflets with different suture density is quite different and the peak von-Mises with 50 suture points is lower than the other three kinds of suture density. From the whole loading process, we can find that the spherical valve leaflet with 50 suture points has better dynamic properties. This work is very helpful when manufacuturing the bioprosthetic heart valve,thus to prolong the lifetime of the bioprosthetic heart valve.


2012 ◽  
Vol 157-158 ◽  
pp. 714-718
Author(s):  
Quan Yuan ◽  
Hai Bo Ma ◽  
Cheng Rui Zhang ◽  
Hua Cong ◽  
Xin Ye

This paper constructs four types of bioprosthetic heart valve’s parametric model via computer aided design, a series of accurate parameters of the bioprosthetic heart valve, such as radius of the sutural ring, height of the supporting stent and inclination of the supporting stent are determined. The finite element method is used to analyze the mechanical properties of the bioprosthetic heart valve in which geometric non-linearity and material non-linearity are all taken into account. The finite element analysis results show that the shape of the bioprosthetic has a significant effect on the mechanical performance of the valve. The stress distribution of ellipsoidal valve leaflets is comparatively reasonable. It has lower peak von-Mises, smaller stress concentration area than the other three types of valve leaflets. This work is very helpful to manufacture valvular leaflets with reasonable shapes and to prolong the lifetime of the bioprosthetic heart valve.


2011 ◽  
Vol 71-78 ◽  
pp. 2683-2688
Author(s):  
Xin Ye ◽  
Quan Yuan ◽  
Hua Cong ◽  
Hai Bo Ma ◽  
Dong Liang Wei

This paper constructs three types of bioprosthetic valve leaflets’ parametric model via computer aided design, a series of accurate parameters of the bioproshtetic heart valve, such as radius of the sutural ring, height of the supporting stent and inclination of the supporting stent, are determined. Numerical simulation is used to determine the effect of different shape designs on the mechanical performance of the bioprosthetic valve leaflet. The dynamic behavior of the valve during diastolic phase is analyzed. The finite element analysis results show the stress distribution of the ellipsoidal and spherical valve leaflets are comparatively reasonable. The ellipsoidal and spherical valve leaflets have the following advantages over the cylindrical leaflet valve, lower peak von-Mises stress, smaller stress concentration area, and relatively uniform stress distribution. The ellipsoidal and spherical valve leaflets may contribute to the long term durability of the valve. This work is very helpful to manufacture valvular leaflets with reasonable shapes and to prolong the lifetime of the bioprosthetic heart valve.


2014 ◽  
Vol 598 ◽  
pp. 146-150 ◽  
Author(s):  
Dominik B. Schwinn

Crashworthiness proof is a certification requirement by aviation authorities for new aircraft types. The objective of static design is a sufficiently stiff and strong structure to carry bending and torsion during flight and ground maneuvers. High stiffness, however, is critical for good crashworthiness behavior. Therefore, crashworthiness investigations should be included at early design stages of the overall aircraft design process. This paper introduces the crash analysis tool AC-CRASH and shows an approach of integrating it into the preliminary design phase.


Sign in / Sign up

Export Citation Format

Share Document