A Combined Analytical and Numerical Approach to Analyze Mud Motor Excited Vibrations in Drilling Systems

Author(s):  
Andreas Hohl ◽  
Carsten Hohl ◽  
Christian Herbig

Severe vibrations in drillstrings and bottomhole assemblies can be caused by cutting forces at the bit or mass imbalances in downhole tools. One of the largest imbalances is related to the working principle of the so-called mud motor, which is an assembly of a rotor that is maintained by the stator. One of the design-related problems is how to minimize vibrations excited by the mud motor. Simulation tools using specialized finite element methods (FEM) are established to model the mechanical behavior of the structure. Although finite element models are useful for estimating rotor dynamic behavior and dynamic stresses of entire drilling systems they do not give direct insight how parameters affect amplitudes and stresses. Analytical models show the direct influence of parameters and give qualitative solutions of design related decisions. However these models do not provide quantitative numbers for complicated geometries. An analytical beam model of the mud motor is derived to calculate the vibrational amplitudes and capture basic dynamic effects. The model shows the direct influence of parameters of the mud motor related to the geometry, material properties and fluid properties. The analytical model is compared to the corresponding finite element model. Vibrational amplitudes are discussed for different modes and parameter changes. Finite element models of the entire drilling system are used to verify the findings from the analytical model using practical applications. The results are compared to time domain and statistical data from laboratory and field measurements.

2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


2000 ◽  
Vol 123 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Hong Yao ◽  
Jian Cao

Methodologies of rapidly assessing maximum possible forming heights are needed for three-dimensional 3D sheet metal forming processes at the preliminary design stage. In our previous work, we proposed to use an axisymmetric finite element model with an enlarged tooling and blank size to calculate the corner failure height in a 3D part forming. The amount of enlargement is called center offset, which provides a powerful means using 2D models for the prediction of 3D forming behaviors. In this work, an analytical beam model to calculate the center offset is developed. Starting from the study of a square cup forming, a simple analytical model is proposed and later generalized to problems with corners of an arbitrary geometry. The 2D axisymmetric models incorporated with calculated center offsets were compared to 3D finite element simulations for various cases. Good assessments of failure height were obtained.


2016 ◽  
Vol 08 (07) ◽  
pp. 1640004 ◽  
Author(s):  
Rui Xiao

When exposed to a solvent, a gel bilayer beam can bend due to different swelling abilities of the two layers. In this work, an analytical model is derived to obtain the curvature of the bilayer beam. The model is further linearized to obtain an explicit expression for the curvature. The finite element model is used to verify the above analytical solutions. The results show the curvature predicted by the analytical model is in excellent agreement with the finite element results. The linear model predicts a smaller curvature at large swelling ratio. These results suggest the analytical models can provide a design metric for self-folding 3D structures.


2021 ◽  
pp. 107754632110267
Author(s):  
Jiandong Huang ◽  
Xin Li ◽  
Jia Zhang ◽  
Yuantian Sun ◽  
Jiaolong Ren

The dynamic analysis has been successfully used to predict the pavement response based on the finite element modeling, during which the stiffness and mass matrices have been established well, whereas the method to determine the damping matrix based on Rayleigh damping is still under development. This article presents a novel method to determine the two parameters of the Rayleigh damping for dynamic modeling in pavement engineering. Based on the idealized shear beam model, a more reasonable method to calculate natural frequencies of different layers is proposed, by which the global damping matrix of the road pavement can be assembled. The least squares method is simplified and used to calculate the frequency-independent damping. The best-fit Rayleigh damping is obtained by only determining the natural frequencies of the two modal. Finite element model and in-situ field test subjected by the same falling weight deflectometer pulse loads are performed to validate the accuracy of this method. Good agreements are noted between simulation and field in-situ results demonstrating that this method can provide a more accurate approach for future finite element modeling and back-calculation.


2016 ◽  
Vol 850 ◽  
pp. 957-964
Author(s):  
Wei Zheng ◽  
Hong Zhang ◽  
Xiao Ben Liu ◽  
Le Cai Liang ◽  
Yin Shan Han

There is a potential for major damage to the pipelines crossing faults, therefore the strain-based design method is essential for the design of buried pipelines. Finite element models based on soil springs which are able to accurately predict pipelines’ responses to such faulting are recommended by some international guidelines. In this paper, a comparative analysis was carried out among four widely used models (beam element model; shell element model with fixed boundary; shell element model with beam coupled; shell element model with equivalent boundary) in two aspects: differences of results and the efficiency of calculation. The results show that the maximum and minimum strains of models coincided with each other under allowable strain and the calculation efficiency of beam element model was the highest. Besides, the shell element model with beam coupled or equivalent boundary provided the reasonable results and the calculation efficiency of them were higher than the one with fixed boundary. In addition, shell element model with beam coupled had a broader applicability.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


2010 ◽  
Vol 24-25 ◽  
pp. 25-41 ◽  
Author(s):  
Keith Worden ◽  
W.E. Becker ◽  
Manuela Battipede ◽  
Cecilia Surace

This paper concerns the analysis of how uncertainty propagates through large computational models like finite element models. If a model is expensive to run, a Monte Carlo approach based on sampling over the possible model inputs will not be feasible, because the large number of model runs will be prohibitively expensive. Fortunately, an alternative to Monte Carlo is available in the form of the established Bayesian algorithm discussed here; this algorithm can provide information about uncertainty with many less model runs than Monte Carlo requires. The algorithm also provides information regarding sensitivity to the inputs i.e. the extent to which input uncertainties are responsible for output uncertainty. After describing the basic principles of the Bayesian approach, it is illustrated via two case studies: the first concerns a finite element model of a human heart valve and the second, an airship model incorporating fluid structure interaction.


2014 ◽  
Vol 6 (1) ◽  
pp. 19-25
Author(s):  
Gergely Máté Kiss ◽  
István Vajda

Abstract Co-simulation is a method which makes it possible to study the electric machine and its drive at once, as one system. By taking into account the actual inverter voltage waveforms in a finite element model instead of using only the fundamental, we are able to study the electrical machine's behavior in more realistic scenario. The recent increase in the use of variable speed drives justifies the research on such simulation techniques. In this paper we present the co-simulation of an inverter fed permanent magnet synchronous machine. The modelling method employs an analytical variable speed drive model and a finite element electrical machine model. By linking the analytical variable speed drive model together with a finite element model the complex simulation model enables the investigation of the electrical machine during actual operation. The methods are coupled via the results. This means that output of the finite element model serves as an input to the analytical model, and the output of the analytical model provides the input of the finite element model for a different simulation, thus enabling the finite element simulation of an inverter fed machine. The resulting speed and torque characteristics from the analytical model and the finite element model show a good agreement. The experiences with the co-simulation technique encourage further research and effort to improve the method.


2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.


Sign in / Sign up

Export Citation Format

Share Document