Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation

Author(s):  
Tommaso Bacci ◽  
Gianluca Caciolli ◽  
Bruno Facchini ◽  
Lorenzo Tarchi ◽  
Charlie Koupper ◽  
...  

In order to deepen the knowledge of the interaction between modern lean burn combustors and high pressure turbines, a real scale annular three sector combustor simulator has been assembled at University of Florence, with the goal of investigating and characterizing the generated aerothermal field and the hot streaks transport between combustor exit and the high pressure vanes location. To generate hot streaks and simulate lean burn combustors behavior, the rig is equipped with axial swirlers, fed by main air flow that is heated up to 531 K, and liners with effusion cooling holes that are fed by air at ambient temperature. The three sector configuration is used to reproduce the periodicity on the central sector and to allow to perform measurements inside the chamber, through the lateral walls. Ducts of different length have been mounted on the swirlers, preserving the hot mainflow from the interaction with coolant. Such configurations, together with the one without ducts, have been tested, using different measurement techniques, in order to highlight the differences in the resulting flow fields. First of all, isothermal PIV measurements have been performed on the combustion chamber symmetry plane, to highlight the mixing phenomena between the mainflow and cooling flows. Then a detailed investigation of the mean aerothermal field at combustor exit has been carried out, for nominal operating conditions, by means of a five hole pressure probe provided with a thermocouple, installed on an automatic traverse system. With the aim of analyzing the hot streaks transport and the flow field modification towards the vanes location, such measurements have been performed on two different planes: one located in correspondence of the combustor exit and the further one placed downstream, in the virtual location of the vanes leading edges. Therefore, an experimental database, describing the evolution of the flow field in a combustor simulator with typical traits of modern lean burn chambers, for different injector geometries, has been set up.

Author(s):  
Tommaso Bacci ◽  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Lorenzo Mazzei ◽  
Bruno Facchini

Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover, important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities, and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl, and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together.In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners, and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50 deg, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure, and velocity fields) has been evaluated by means of a five-hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.


Author(s):  
U. Meier ◽  
L. Lange ◽  
J. Heinze ◽  
C. Hassa ◽  
S. Sadig ◽  
...  

Self-excited periodic instabilities in a staged lean burn injector could be forced by operating the combustor at off-design conditions. These pressure oscillations were studied in a high pressure single sector combustor with optical access. Two damper configurations were installed and tested with respect to their damping efficiency in relation to the configuration without dampers. For a variety of test conditions, derived from a part load case, time traces of pressure in the combustor were measured, and amplitudes were derived from their Fourier transformation. These measurements were performed for several combinations of the operating parameters, i.e., injector pressure drop, air/fuel ratio (AFR), pilot/main fuel split, and preheat temperature. These tests “ranked” the respective damper configurations and their individual efficiency with respect to the configuration without dampers. Although a general trend could be observed, the ranking was not strictly consistent for all operating conditions. For several test cases, preferably with pronounced self-excited pressure oscillations, phase-resolved planar optical measurement techniques were applied to investigate the change of spatial structures of fuel, reaction zones, and temperature distributions over a period of an oscillation. A pulsating motion was detected for both pilot and main flame, driven by a pulsating transport of the liquid fuel. This pulsation, in turn, is caused by a fluctuating air velocity, in connection with a prefilming airblast type atomizer. A phase shift between pilot and main injector heat release was observed, corresponding to a shift of fuel penetration. Local Rayleigh indices were calculated qualitatively, based on phase-resolved OH chemiluminescence used as marker for heat release, and corresponding pressure values. This identified regions, where a local amplification of pressure oscillations occurred. These regions were largely identical to the reaction regions of pilot and main injector, whereas the recirculation zone between the injector flows was found to exhibit a damping effect.


Author(s):  
T. Bacci ◽  
T. Lenzi ◽  
A. Picchi ◽  
L. Mazzei ◽  
B. Facchini

Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together. In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50°, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure and velocity fields) has been evaluated by means of a five hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.


Author(s):  
U. Meier ◽  
L. Lange ◽  
J. Heinze ◽  
C. Hassa ◽  
S. Sadig ◽  
...  

Self-excited periodic instabilities in a staged lean burn injector could be forced by operating the combustor at off-design conditions. These pressure oscillations were studied in a high pressure single sector combustor with optical access. Two damper configurations were installed and tested with respect to their damping efficiency in relation to the configuration without dampers. For a variety of test conditions, derived from a part load case, time traces of pressure in the combustor were measured, and amplitudes were derived from their Fourier transformation. These measurements were performed for several combinations of the operating parameters, i.e., injector pressure drop, air/fuel ratio, pilot/main fuel split and preheat temperature. These tests “ranked” the respective damper configurations and their individual efficiency with respect to the configuration without dampers. Although a general trend could be observed, the ranking was not strictly consistent for all operating conditions. For several test cases, preferably with pronounced self-excited pressure oscillations, phase-resolved planar optical measurement techniques were applied to investigate the change of spatial structures of fuel, reaction zones and temperature distributions over a period of an oscillation. A pulsating motion was detected for both pilot and main flame, driven by a pulsating transport of the liquid fuel. This pulsation, in turn, is caused by a fluctuating air velocity, in connection with a prefilming airblast type atomizer. A phase shift between pilot and main injector heat release was observed, corresponding to a shift of fuel penetration. Local Rayleigh indices were calculated qualitatively, based on phase-resolved OH chemiluminescence used as marker for heat release, and corresponding pressure values. This identified regions, where a local amplification of pressure oscillations occurred. These regions were largely identical to the reaction regions of pilot and main injector, whereas the recirculation zone between the injector flows was found to exhibit a damping effect.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Author(s):  
Vaclav Slama ◽  
Lukas Mrozek ◽  
Bartolomej Rudas ◽  
David Simurda ◽  
Jindrich Hala ◽  
...  

Abstract Aerodynamic measurements and numerical simulations carried out on a model of a high-pressure valve assembly used for nozzle governing of a turbine with 135MW output are described in this paper. Aim of the study is to investigate effects of control valve’s strainers on pressure losses and unsteadiness in the flow field. It is an important task since undesirable flow fluctuations can lead to operational reliability issues. Measurements were carried out in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences (IT) where an aerodynamic tunnel is installed. Numerical simulations were carried out in the Doosan Skoda Power (DSP) Company using ANSYS software tools. The experimental model consists of one of two identical parts of the real valve assembly. It means it consists of an inlet pipeline, a stop valve, a valve chamber with two independent control valves, its diffusers and outlet pipelines. The numerical model consists of both assembly parts and includes also an A-wheel control stage in order to simulate the real turbine operating points. The different lifts of the main cone in each control valve for its useful combinations were investigated. Results were evaluated on the model with control valve’s strainers, which were historically used in order to stabilize the flow, and without them. The results of the experimental measurement were compared with the numerical results in the form of pressure losses prediction. From measured pressure fluctuations, it was found out where and for which conditions a danger of flow instabilities occurs. It can be concluded that there is a border, in terms of operating conditions, where the flow field starts to be unstable and this border is different dependent of the fact whether the control valve’s strainers are used or not. Therefore, the areas of safe and danger operational reliability can be predicted. The influence of the control valve’s strainers on the maximal amplitude of periodic fluctuations appears only for the cases when valves are highly overloaded. For normal operating conditions, there is no difference. As a result, the control valve’s strainers do not have to be used in standard applications of valve assemblies. Furthermore, a loss model for valve pressure loss estimation could be updated. Therefore, a pressure loss should be predicted with a sufficient accuracy for each new turbine bid with similar valve assemblies.


Author(s):  
G. Persico ◽  
P. Gaetani ◽  
C. Osnaghi

An extensive experimental analysis on the subject of the unsteady periodic flow in a highly subsonic HP turbine stage has been carried out at the Laboratorio di Fluidodinamica delle Macchine (LFM) of the Politecnico di Milano (Italy). In this paper the blade row interaction is progressively enforced by increasing the stator and rotor blade loading and by reducing the stator-rotor axial gap from 100% (very large to smooth the rotor inlet unsteadiness) to 35% (design configuration) of the stator axial chord. The time-averaged three-dimensional flow field in the stator-rotor gap was investigated by means of a conventional five-hole probe for the nominal (0°) and an highly positive (+22°) stator incidences. The evolution of the viscous flow structures downstream of the stator is presented to characterize the rotor incoming flow. The blade row interaction was evaluated on the basis of unsteady aerodynamic measurements at the rotor exit, performed with a fast-response aerodynamic pressure probe. Results show a strong dependence of the time-averaged and phase-resolved flow field and of the stage performance on the stator incidence. The structure of the vortex-blade interaction changes significantly as the magnitude of the rotor inlet vortices increases, and very different residual traces of the stator secondary flows are found downstream of the rotor. On the contrary, the increase of rotor loading enhances the unsteadiness in the rotor secondary flows but has a little effect on the vortex-vortex interaction. For the large axial gap, a reduction of stator-related effects at the rotor exit is encountered when the stator incidence is increased as a result of the different mixing rate within the cascade gap.


2006 ◽  
Vol 129 (3) ◽  
pp. 580-590 ◽  
Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper, the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered, and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel, only the rotor cascade effects can be observed, with a dominant role played by the tip leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, whereas in the minimum stator-rotor axial gap configuration their interaction with the rotor vortices dominates the flow field. A good agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


Author(s):  
Marco Sacchi ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Stefano Zecchi

The secondary flow field in a large-scale high-pressure turbine cascade with micro-holed endwall cooling has been investigated at the Genova Laboratory of Aerodynamics and Turbomachinery in cooperation with Avio S.p.A in the framework of the European Project AITEB-2. The experimental investigation has been performed for the baseline configuration, with a smooth solid endwall installed, and for the cooled configuration with a micro-holed endwall providing micro-jets ejection from the wall. Two different cooling flow rates were investigated and the experimental results are reported in the paper. Different measurement techniques have been employed to analyze the secondary flow field along the channel and in a downstream tangential plane. Particle Image Velocimetry has been utilized to quantify the blade-to-blade velocity components in a plane located close to the endwall and in the midspan plane. Hot-wire measurements have been performed in a tangential plane downstream of the blade trailing edges in order to survey the micro-jets effects on the secondary flows behavior. The total pressure distributions, for the different blowing conditions, have been measured in the downstream tangential plane by means of a Kiel pneumatic probe. The results, represented in color plots of velocity, pressure loss coefficient and turbulent kinetic energy distributions, allow the identification of the endwall effusion cooling effects on location and strength of the secondary vortical structures. The thermal investigation of the effusion system is discussed in Part 2 of the paper.


Author(s):  
O. Schennach ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani ◽  
J. Woisetschla¨ger

The paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three dimensional flow field downstream of the high pressure turbine for different vane clocking positions. To give an overview of the time averaged flow field, measurements by means of a pneumatic five hole probe were performed upstream and downstream of the second stator. Furthermore in this planes additional unsteady measurements were carried out with Laser Doppler Velocimetry in order to record rotor phase resolved velocity, flow angle and turbulence distributions at two different clocking positions. In the measurement plane upstream the second vane the time resolved pressure field has been analyzed by means of a Fast Response Aerodynamic Pressure Probe. The paper shows that the secondary flows of the second vane are significantly modified for different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out.


Sign in / Sign up

Export Citation Format

Share Document