Constraint Mechanical Model and Investigation for Rub-Impact in Aero-Engine System

Author(s):  
Yanhong Ma ◽  
Chong Cao ◽  
Dayi Zhang ◽  
Zhichao Liang ◽  
Jie Hong

A mechanical model for rub-impact was proposed considering the additional constraints caused by rubbing. Based on the constraint mechanical model, some characteristics of response such as resonant range expansion, contact unstability and amplitude jump during rubbing were studied. The influences of typical parameters on rotor’s vibration response with rub constraint were also evaluated. The result reveals that additional constraint stiffness causes the unstable contact range and the resonant range to be wider. While greater friction coefficient between rotor and casing results in smaller response and narrower resonant range. A simplified dynamic model for the aero-engine was built, which takes the constraint effect into account. The numerical simulation result shows that in addition to the resonant range expansion caused by the constraint, the rotor response is also closely related to rubbing location and mode shapes. The rotor response shows a feature of quasi-periodic in slight rubbing, while the rotor motion tends unstable in heavy rubbing.

2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.


Author(s):  
Hithesh Channegowda ◽  
Raghu V. Prakash ◽  
Anandavel Kaliyaperumal

Fan blades of an aero-engine assembly are the critical components that are subjected to Foreign Object Damage (FOD) such as bird impact. Bird impact resulting in deformation damage onto set of blades, which in turn alters the blade mass and stiffness distribution compared to undamaged blades. This paper presents the numerical evaluation of dynamic characteristics of bird impact damaged blades. The dynamic characteristics evaluated are the natural frequencies and mode shapes of post impact damaged set of blades and the results are compared with undamaged set of blades. The frequencies and mode shapes are evaluated for the damaged blades, with varying angles of bird impact and three blade rotational speeds. Study reveals that first bending and torsional frequencies of deformed blades are significantly affected compared to undamaged set of blades. Study emphasize the need to evaluate the natural frequencies deformed blades, that has direct bearing on High Cycle Fatigue (HCF) life of the blade, to ensure post damaged blades operate safely for certain time to reduce inflight accidents and safe landing.


2016 ◽  
Vol 846 ◽  
pp. 506-511
Author(s):  
Chong Fang Sun ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu

New-type floor is composed of three kinds of slabs joined together through fittings. It is a kind of anisotropic two-way slab. In order to study the calculation method of natural frequency, series method, variable thickness method and variable stiffness method are adopted to calculate the natural frequency. The calculation results of three methods are compared with test result and numerical simulation result. The conclusion is that the calculation result of the variable stiffness method is the closest to the real natural frequency of new-type floor.


Author(s):  
Keiichi Okai ◽  
Hitoshi Fujiwara ◽  
Hiroshi Nomura ◽  
Takeshi Tagashira ◽  
Ryoji Yanagi
Keyword(s):  

Author(s):  
Wim Boender ◽  
André Burghardt ◽  
Erik Paul van Klaveren ◽  
Jan Rabenberg

2020 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Pu Wang ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Anying Yuan

The study of evolution laws of the mining-induced stress in floor strata affected by overhead mining is extremely important with respect to the stability and support of a floor roadway. Based on the geological conditions of the drainage roadway in the 10th district in a coalmine, a mechanical model of a working face for overhead mining over the roadway is established, and the laws influencing mining stress on the roadway in different layers are obtained. The evolution of mining stress in floor with different horizontal distances between the working face and the floor roadway that is defined as LD are examined by utilizing UDEC numerical simulation, and the stability of roadway is analyzed. The results of the numerical simulation are verified via on-site tests of the deformation of the surrounding rocks and bolts pull-out from the drainage roadway. The results indicate that the mining stress in floor is high, which decreases slowly within a depth of less than 40 m where the floor roadway is significantly affected. The mining stress in the floor increases gradually, and the effect of the mining on the roadway is particularly evident within 0 m ≤ LD ≤ 40 m. Although the floor roadway is in a stress-relaxed state, the worst stability of the surrounding rocks is observed during the range -20 m ≤ LD < 0 m, in which the negative value indicates that the working face has passed the roadway. The roadway is affected by the recovery of the abutment stress in the goaf when -60 m ≤ LD <20 m, and thus it is important to focus on the strengthening support. The results may provide a scientific basis for establishing a reasonable location and support of roadways under similar conditions.


Author(s):  
Diana K. Grauer ◽  
Kirby S. Chapman ◽  
Ali Keshavar

The natural gas transmission industry integrates turbochargers into the engine system to strategically increase airflow for the purpose of decreasing pollutant emissions, such as Nitrogen Oxide (NOX). Regulations are expected to be tightened in the coming years, forcing transmission companies to look past turbochargers for compliance. The solution to further decreasing emissions lies not in further retrofit, but focusing on the physics of the current system. The flow rate physics of the intake and exhaust manifolds impede equal distribution of air from the turbocharger to each cylinder. Imbalance in airflow creates a discontinuity in the trapped equivalence ratio from cylinder to cylinder. The trapped equivalence ratio is directly proportional to NOX production and a function of the fuel flow rate, airflow rate, and, in two-stroke cycle engines, the scavenging efficiency. Only when these three characteristics are balanced cylinder to cylinder will the combustion and the NOX production in each cylinder be equal. The engine NOX production will be disproportionately high if even one cylinder operates less lean relative to the other cylinders. Balancing the NOX production between cylinders can lower the overall NOX production of the engine. This paper reports on an investigation into the transient, compressible flow physics that impact the trapped equivalence ratio. A comprehensive, variable geometry, multi-cylinder Turbocharger-Reciprocating Engine Computer Simulation (T-RECS) has been developed to illustrate the effect of airflow imbalance on an engine. A new model, the Charge Air Integrated Manifold Engine Numerical Simulation (CAIMENS), is a manifold flow model coupled with the T-RECS engine processor that uses an integrated set of fundamental principles to determine the crank angle-resolved pressure, temperature, burned and unburned mass fractions, and gas exchange rates for the cylinder. CAIMENS has the ability to show the transient impact of one cylinder firing on each successive cylinder. The pulsation model also describes the impact of manifold pressure drop on in-cylinder peak pressure and the pressure wave introduced to the intake manifold by uncovering the intake ports. CAIMENS provides the information necessary to quantify the impact of airflow imbalance, and allows for the visualization of the engine system before and after airflow correction. The model shows that not only does the manifold pressure drop have a significant impact on the in-cylinder peak pressure, but it also has an impact on the pressure wave introduced to the intake manifold as the ports are opened. Also, each cylinder has a considerable impact on the airflow into each successive cylinder.


2007 ◽  
Vol 129 (4) ◽  
pp. 425-433 ◽  
Author(s):  
Walter Lacarbonara ◽  
Achille Paolone ◽  
Fabrizio Vestroni

A mechanical model describing finite motions of nonshallow cables around the initial catenary configurations is proposed. An exact kinematic formulation accounting for finite displacements is adopted, whereas the material is assumed to be linearly elastic. The nondimensional mechanical parameters governing the motions of nonshallow cables are obtained via a suitable nondimensionalization, and the regions of their physically plausible values are portrayed. The spectral properties of linear unforced undamped vibrations around the initial static configurations are investigated via a Galerkin-Ritz discretization. A classification of the modes is obtained on the basis of their associated energy content, leading to geometric modes, elastostatic modes (with prevalent transverse motions and appreciable stretching), and elastodynamic modes (with prevalent longitudinal motion). Moreover, an extension of Irvine’s model to moderately nonshallow cables is proposed to determine the frequencies and mode shapes in closed form.


Sign in / Sign up

Export Citation Format

Share Document