Estimation of Burner-Can Induced Excitation Response of an Industrial Low Pressure Turbine Blade: Validation Against Prototype Test Data

Author(s):  
Maria A. Mayorca ◽  
Albert Torres ◽  
Vsevolod Kharyton ◽  
Ronnie Bladh

Discovering vibration problems after engine prototype tests translates in increased costs and limited re-design space. For this reason numerical tools are more and more being applied to help taking correct decision in the early design. This paper presents the estimation of the vibration levels induced by hot-streaks from burner-cans in the last blade of an industrial gas turbine. The aerodynamic forcing was obtained from full wheel time marching unsteady computational fluid dynamics calculation. The results are compared with a previous calculation of a scaled sector model. Determination of different sources of damping is achieved by the use of an unsteady aerodynamics harmonic solver and a friction damping harmonic balance method. Results show that the fatigue risk due to the first burner-can harmonic could be predicted with a fairly good accuracy from both scaled and full wheel model when compared with the strain gage prototype test data. The presence of various engine orders in the test spectral maps are commented and related to the calculations.

Author(s):  
Jan Philipp Heners ◽  
Stephan Stotz ◽  
Annette Krosse ◽  
Detlef Korte ◽  
Maximilian Beck ◽  
...  

Unsteady pressure fluctuations measured by fast-response pressure transducers mounted in a low-pressure turbine cascade are compared to unsteady simulation results. Three differing simulation approaches are considered, one time-integration method and two harmonic balance methods either resolving or averaging the time-dependent components within the turbulence model. The observations are used to evaluate the capability of the harmonic balance solver to predict the transient pressure fluctuations acting on the investigated stator surface. Wakes of an upstream rotor are generated by moving cylindrical bars at a prescribed rotational speed that refers to a frequency of f∼500 Hz. The excitation at the rear part of the suction side is essentially driven by the presence of a separation bubble and is therefore highly dependent on the unsteady behavior of turbulence. In order to increase the stability of the investigated harmonic balance solver, a developed Lanczos-type filter method is applied if the turbulence model is considered in an unsteady fashion.


Author(s):  
Anna Engels-Putzka ◽  
Jan Backhaus ◽  
Christian Frey

This paper describes the development and initial application of an adjoint harmonic balance solver. The harmonic balance method is a numerical method formulated in the frequency domain which is particularly suitable for the simulation of periodic unsteady flow phenomena in turbomachinery. Successful applications of this method include unsteady aerodynamics as well as aeroacoustics and aeroelasticity. Here we focus on forced response due to the interaction of neighboring blade rows. In the CFD-based design and optimization of turbomachinery components it is often helpful to be able to compute not only the objective values — e.g. performance data of a component — themselves, but also their sensitivities with respect to variations of the geometry. An efficient way to compute such sensitivities for a large number of geometric changes is the application of the adjoint method. While this is frequently used in the context of steady CFD, it becomes prohibitively expensive for unsteady simulations in the time domain. For unsteady methods in the frequency domain, the use of adjoint solvers is feasible, but still challenging. The present approach employs the reverse mode of algorithmic differentiation (AD) to construct a discrete adjoint of an existing harmonic balance solver in the framework of an industrially applied CFD code. The paper discusses implemen-tational issues as well as the performance of the adjoint solver, in particular regarding memory requirements. The presented method is applied to compute the sensitivities of aeroelastic objectives with respect to geometric changes in a turbine stage.


Author(s):  
F. Carchedi ◽  
G. R. Wood

This paper describes the design and development of a 15-stage axial flow compressor for a −6MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low speed surge line and the effects of the stagger changes are discussed.


2003 ◽  
Vol 125 (1) ◽  
pp. 25-32 ◽  
Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Almudena Vega ◽  
Roque Corral

This paper numerically investigates the correlation between the so-called unsteady loading parameter (ULP), derived in Part I of the corresponding paper, and the unsteady aerodynamics of oscillating airfoils at low reduced frequency with special emphasis on the work-per-cycle curves. Simulations using a frequency-domain linearized Navier–Stokes solver have been carried out on rows of a low-pressure turbine airfoil section, the NACA65 section, and a flat plate, to show the correlation between the actual value of the ULP and the flutter characteristics, for different airfoils, operating conditions, and mode shapes. Both the traveling wave and influence coefficient formulations of the problem are used in combination to increase the understanding of the ULP influence in different aspects of the unsteady flow field. It is concluded that, for a blade vibrating in a prescribed motion at design conditions, the ULP can quantitatively predict the effect of unsteady loading variations due to changes in both the incidence and the mode shape on the work-per-cycle curves. It is also proved that the unsteady loading parameter can be used to qualitatively compare the flutter characteristics of different airfoils.


Author(s):  
Mahmoud L. Mansour ◽  
S. Murthy Konan ◽  
Shraman Goswami

Although turbo-machinery main stream flows are predominantly turbulent, the low pressure turbine airfoil surface boundary layer may be either laminar or turbulent. When boundary layer flow is laminar and passes through a zone of adverse pressure gradient, bypass or separation transition can occur via the Tollmien-Schlichting or Kelvin-Helmholtz instabilities. As the gas turbine’s low pressure turbine operating condition changes from sea level take-off to the altitude cruise, Reynolds number is significantly lowered and the turbine’s performance loss increases significantly. This fall-off in performance characteristic is known as lapse rate. Ability to accurately model such phenomenon is a prerequisite for reliable loss prediction and essential for improving low pressure turbine designs. Establishing such capability requires the validation and evaluation of existing low Reynolds number turbulence models, with laminar-turbulent transition modeling capability, against test cases with measured data. This paper summarizes the results of evaluating and validating two 3D viscous “RANS” Reynolds-Averaged Navier-Stokes programs for two test cases with test data. The first test case is the ERCOFTAC’ flat plate with and without pressure gradient, and the second is a Honeywell three-and-half-stage low pressure turbine with available test data at high and low Reynolds number operations. In addition to evaluating the CFD codes against test data, the flat plate test cases were used to establish the meshing and modeling best practice for each code before performing the validation for the Honeywell multistage low pressure turbine. The RANS CFD programs are Numeca’s Fine Turbo and ANSYS/CFX. Numeca’s Fine Turbo employs a two-equation K-ε turbulence model without laminar-turbulent transition modeling capability and the one-equation Spallart-Allmaras turbulence model with laminar-turbulent transition modeling capability. The ANSYS/CFX, on the other hand, employs a two-equation K-ω turbulence model (AKA SST or shear stress transport) with ability to model laminar-turbulent transition. Predictions of the CFD codes are compared with test data and the impact of modeling the laminar-turbulent transition on the prediction accuracy is assessed and presented. Both CFD codes are commercially available and the evaluation presented here is based on users’ prospective that targets the applicability of such predictive tools in the turbine design process.


1996 ◽  
Vol 118 (4) ◽  
pp. 643-653 ◽  
Author(s):  
M. G. Turner

The average passage approach of Adamczyk et al. (1990) has been used to simulate the multistage environment of the General Electric E3 low-pressure turbine. Four configurations have been analyzed and compared to test data. These include the nozzle only, the first stage, the first stage and a half, and the first two stages. A high casing slope on the first-stage nozzle causes the secondary flow vortex to separate off the casing and enter the downstream rotor. The detrimental effect on performance due to this vortex interaction has been predicted by the above approach, whereas isolated blade row calculations cannot simulate this interaction. The unsteady analysis developed by Chen et al. (1994) has also been run to understand the unsteady flow field in the first-stage rotor and compare with the average passage model and test data. Comparisons of both the steady and unsteady analyses with data are generally good, although in the region near the casing of the shrouded rotors, the predicted loss is lower than that shown by the data.


Author(s):  
Zhongman Ding ◽  
Pepe Palafox ◽  
Kenneth Moore ◽  
Raymond Chupp ◽  
Kevin Kirtley

Fundamental test data for different rim seal geometries have been obtained from the Hot Gas Ingestion Rig (HGIR), a scaled 1.5-stage turbine rig configured from a current generation heavy duty gas turbine. With well-controlled operating conditions the rig has provided valuable sets of data for CFD tool validation. Part I of this work [1] introduced details on the HGIR design and test data summary from selected rim seal configurations and test conditions. In this study, Part II, CFD simulations were carried out on the baseline test configuration, and different modeling approaches were compared to identify and validate a “reduced-order” CFD methodology, i.e. CFX analyses using the k-ε model with scalable wall function. The results show steady state CFD simulation to be incapable of predicting the ingestion levels observed from rig data. However, unsteady solutions using a two-vane/four-blade sector model including a stator-rotor domain interface showed ingestion over the outer rim seal that was in reasonably good agreement with test data. Good agreement was also obtained on pressure distributions in the circumferential direction. The identified “reduced-order” CFD modeling methodology demonstrated enough sensitivity to differentiate between sealing geometry variations, and thus can be applied to guide rim seal design.


Author(s):  
Loïc Peletan ◽  
Sebastien Baguet ◽  
Georges Jacquet-Richardet ◽  
Mohamed Torkhani

In the present paper, a Harmonic Balance Method (HBM) coupled with a pseudo-arc length continuation algorithm is presented for the prediction of the steady state behaviour of a rotor-stator contact problem. The ability of the HBM to reproduce the four most common phenomena encountered during rotor to stator contact situations (i.e. ‘no-rub’, ‘full annular rub’, ‘partial rub’ and ‘backward whirl/whip’) is investigated. A modified Jeffcott rotor model is used and results of the proposed algorithm are compared with traditional time marching solutions and analytical predictions. The advantages and limitations of the HBM for this kind of problem are analyzed. It is shown that the HBM is orders of magnitude faster than transient simulations, and provides very accurate results. However, in its current form it is unable to predict quasi-periodic behaviour. Detailed analysis of the transient solutions yields valuable information for the future extension of the HBM to efficient quasi-periodic simulations.


Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Sign in / Sign up

Export Citation Format

Share Document