Evaluation of Air Filtration Options for an Industrial Gas Turbine

Author(s):  
Christopher A. Perullo ◽  
Josh Barron ◽  
Dale Grace ◽  
Leonard Angello ◽  
Tim Lieuwen

Gas turbines ingest large quantities of air during operation. As a result, large quantities of foreign particles ranging in size from smoke (0.01 to 1.0 micron) to pollen (10 micron) enter the unit and can contribute to both fouling and erosion depending on particle size. Fouling and erosion both lead to reductions in unit output and efficiency resulting in increased operational cost. Operators have historically combatted fouling through a combination of online water washes, more effective off-line water washes, and air filtration. As is the case with almost all engineering problems, the trade-off between the cost and effectiveness of these methods must be evaluated. Online washing is somewhat effective but has led to first stage blade erosion and unit trips in some cases. Off-line washing is more effective at cleaning the unit, but requires the unit to be shut down for extended periods of time. Air filtration can help prevent foreign particles from entering the unit, but higher efficiency filters are generally associated with a larger inlet pressure drop, leading to decreased unit output; this is balanced against reduced fouling rates. These tradeoffs between the costs associated with higher efficiency filters and the frequency of compressor washing need to be evaluated on a plant-by-plant basis to determine the best combination of air filtration and compressor washing programs. This paper presents a field study carried out to determine the effectiveness of high efficiency filters in preventing compressor fouling. Fourteen units at four sites were monitored over a 9 month to 3 year time period to determine the changes in unit performance and the impact of water washes on unit performance for both pre and final filters of lower and higher efficiency ratings. Results to date indicate that higher efficiency filters are effective at reducing the need for off-line water washes and potentially reduce life-cycle cost. Reduced output from the higher pressure drop, high efficiency filters is offset by the better performance retention offered from reduced fouling rates.

Author(s):  
A. K. Malkogianni ◽  
A. Tourlidakis ◽  
A. L. Polyzakis

Geopolitical issues give rise to problems in the smooth and continuous flow of oil and natural gas from the production countries to the consumers’ development countries. In addition, severe environmental issues such as greenhouse gas emissions, eventually guide the consumers to fuels more suitable to the present situation. Alternative fuels such as biogas and coal gas have recently become more attractive because of their benefits, especially for electricity generation. On the other hand, the use of relatively low heating value fuels has a significant effect to the performance parameters of gas turbines. In this paper, the impact of using four fuels with different heating value in the gas turbine performance is simulated. Based on the high efficiency and commercialization criteria, two types of engines are chosen to be simulated: two-shaft simple and single-shaft recuperated cycle gas turbines. The heating values of the four gases investigated, correspond to natural gas and to a series of three gases with gradually lower heating values than that of natural gas. The main conclusions drawn from this design point (DP) and off-design (OD) analysis is that, for a given TET, efficiency increases for both engines when gases with low heating value are used. On the contrary, when power output is kept constant, the use of gases with low heating value will result in a decrease of thermal efficiency. A number of parametric studies are carried out and the effect of operating parameters on performance is assessed. The analysis is performed with customized software, which has been developed for this purpose.


Author(s):  
Rainer Kurz ◽  
Grant Musgrove ◽  
Klaus Brun

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on performance, as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions of the blade surface. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, as well as airfoils that were wet from ingested water, as well as different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing that for a certain amount of wet film thickness, the shear forces actually wash the dust downstream, and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.


Author(s):  
Stefano Consonni ◽  
Ennio Macchi

Externally Fired Combined Cycles (EFCC) constitute one of the options allowing the use of “dirty” fuels like coal, biomass or waste in conjunction with modern, high efficiency gas turbines. This two-part paper discusses thermodynamic, technological and economic issues crucial to the successful realization of EFCCs. Part B discusses the cycle arrangement, its implications for the design and the cost of the high temperature heat exchangers, the effects of scale and the economic prospects. An “enhanced” configuration whereby the excess air sent to the combustor is limited to the minimum required for complete combustion can reach net LHV efficiencies above 50%, with relatively low high-temperature heat transfer surface requirements. Cost projections are hindered by the uncertainty on the cost of the high temperature heat exchangers. Estimates based on published and proprietary data collected by the authors indicate that EFCCs should be cost-competitive with IGCCs, especially at medium-low power outputs.


Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


2022 ◽  
Author(s):  
Tracey Ziev ◽  
Erfan Rasouli ◽  
Ines Noelly-Tano ◽  
Ziheng Wu ◽  
Srujana Yarasi Rao ◽  
...  

Developing low cost, high efficiency heat exchangers (HX) for application in concentrated solar power (CSP) is critical to reducing CSP costs. However, the extreme operating conditions in CSP systems present a challenge for typical high efficiency HX manufacturing processes. We describe a process-based cost model (PBCM) to estimate the cost of fabricating an HX for this application using additive manufacturing (AM). The PBCM is designed to assess the effectiveness of different designs, processes choices, and manufacturing innovations to reduce HX cost. We describe HX design and AM process modifications that reduce HX cost from a baseline of$780/kW-thto$570/kW-th. We further evaluate the impact of alternative current and potential future technologies on HX cost, and identify a pathway to further reduce HX cost to$270/kW-th.


2021 ◽  
Vol 03 (07) ◽  
pp. 314-328
Author(s):  
Ghazi Abdulazeez SULAIMAN BAG ◽  
Rafiq Faraj MAHMOOD

This research was - case study in Rstin company for the steel structures in Erbil- addressed the cost technique of product life cycle, as discussed the kinds, relevance and the stages of the life cycle of the product, also it referred to the corporate governance of discussing its inception the concept and importance of the principles, objectives, and mechanisms was addressed to the technical aspects of the overlap between the cost of the product life cycle corporate governance and show the appropriate techniques used in each stage of the life cycle of the product and how it achieved by a reduction of costs. The result of this study indicates that the integration between the product life cycle cost and corporate governance works on reduce costs through the various stages of product life cycle. It also concluded that this integration increases the company ability to compete in market which leads to rise in its market share and eventually lead to maximize the profit which has been achieved through the optimal use of a company available resources. It also found that the techniques of life cycle cost of the product cannot be applied without support of the company directors, throughout the technical requirements of the application. Corporate governance ensures directors of the company to utilize firm resources which makes the company to achieve several stakeholders' objectives.


Author(s):  
Rainer Kurz ◽  
Grant Musgrove ◽  
Klaus Brun

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.


2014 ◽  
Vol 136 (07) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article focuses on the use of gas turbines for electrical power, mechanical drive, and marine applications. Marine gas turbines are used to generate electrical power for propulsion and shipboard use. Combined-cycle electric power plants, made possible by the gas turbine, continue to grow in size and unmatched thermal efficiency. These plants combine the use of the gas turbine Brayton cycle with that of the steam turbine Rankine cycle. As future combined cycle plants are introduced, we can expect higher efficiencies to be reached. Since almost all recent and new U.S. electrical power plants are powered by natural gas-burning, high-efficiency gas turbines, one has solid evidence of their contribution to the greenhouse gas reduction. If coal-fired thermal power plants, with a fuel-to-electricity efficiency of around 33%, are swapped out for combined-cycle power plants with efficiencies on the order of 60%, it will lead to a 70% reduction in carbon emissions per unit of electricity produced.


Author(s):  
Peter T. McGuigan

Contaminants are ever-present in the air. Contaminated air entering a Gas Turbine will damage internal components and bring about a reduction in overall efficiency. The amount of contaminant entering a Gas Turbine, therefore, needs to be minimised. This paper describes recent developments in the understanding of one such contaminant, salt. It describes how salt is produced, how it varies climatically and how it varies from location to location and is presented here in the context of the author’s particular field of competence — air filtration system design. Salt ingestion by a Gas Turbine intake can cause corrosion and, given time, can accumulate on the compressor blades and reduce the aerodynamic efficiency. The removal of salt in the air is therefore of primary concern to all those involved in the design and operation of Gas Turbines. Salt removal systems are manufactured in various guises. The concept, however, remains the same — salt capture upstream of the Compressor stage. The drawback to this method of salt removal is that it results in a decrease in air pressure entering the Compressor and will consequently bring about a decrease in the overall system performance. As the requirement to remove more and more salt contaminant increases, the pressure drop across the method of filtration required to achieve this, increases. The responsibility of the Filtration Engineer is therefore to fully understand the requirements of the Gas Turbine, to understand the balance between pressure drop, salt removal and salt size and, consequently, to design an appropriate filtration system — one fit for purpose. Gas Turbines in the marine environment are generally found at heights less than 50m above sea level. It is this environment (the Marine Boundary Layer) which historically has been difficult to fully quantify. Herein lies the problem for those involved — if the environment is not fully understood how can the proper exploitation of the technologies be achieved? Recent developments, however, have led to a better understanding of salt in the Marine Boundary Layer. This paper describes these recent developments.


Sign in / Sign up

Export Citation Format

Share Document