Bump-Type Foil Bearings and Flexure Pivot Tilting Pad Bearings for Oil-Free Automotive Turbochargers: Highlights in Rotordynamic Performance

Author(s):  
Keun Ryu ◽  
Zachary Ashton

Oil-free turbochargers require gas bearings in compact units of enhanced rotordynamic stability, mechanical efficiency, and improved reliability with reduced maintenance costs compared with oil-lubricated bearings. Implementation of gas bearings into automotive turbochargers requires careful thermal management with accurate measurements verifying model predictions. Foil bearings are customarily used in oil-free microturbomachinery because of their distinct advantages including tolerance to shaft misalignment and centrifugal/thermal growth, and large damping and load capacity compared with rigid surface gas bearings. Flexure pivot tilting pad bearings are widely used in high performance turbomachinery since they offer little or no cross-coupled stiffnesses with enhanced rotordynamic stability. The paper details the rotordynamic performance and temperature characteristics of two prototype oil-free turbochargers; one supported on foil journal and thrust bearings and the other one is supported on flexure pivot tilting pad journal bearings and foil thrust bearings of identical sizes (OD and ID) with the same aerodynamic components. The tests of the oil-free turbochargers, each consisting of a hollow rotor (∼0.4 kg and ∼23 mm in outer diameter at the bearing locations), are performed for various imbalances in NVH (i.e, cold air driven rotordynamics rig) and gas stand test facilities up to 130 krpm. No forced cooling air flow streams are supplied to the test bearings and rotor. The measurements demonstrate the stable performance of the rotor-gas bearing systems in an ambient NVH test cell with cold forced air into the turbine inlet. Posttest inspection of the test flexure pivot tilting pad bearings after the hot gas stand tests evidences seizure of the hottest bearing, thereby revealing a notable reduction in bearing clearance as the rotor temperature increases. The compliant flexure pivot tilting pad bearings offer a sound solution for stable rotor support only at an ambient temperature condition while demonstrating less tolerance for shaft growth, centrifugal and thermal, beyond its clearance. The current measurements give confidence in the present gas foil bearing technology for ready application into automotive turbochargers for passenger car and commercial vehicle applications with increased reliability.

Author(s):  
Keun Ryu ◽  
Zachary Ashton

Oil-free turbochargers (TCs) require gas bearings in compact units of enhanced rotordynamic stability, mechanical efficiency, and improved reliability with reduced maintenance costs compared with oil-lubricated bearings. Implementation of gas bearings into automotive TCs requires careful thermal management with accurate measurements verifying model predictions. Gas foil bearings (GFBs) are customarily used in oil-free microturbomachinery because of their distinct advantages including tolerance to shaft misalignment and centrifugal/thermal growth, and large damping and load capacity compared with rigid surface gas bearings. Flexure pivot tilting pad bearings (FPTPBs) are widely used in high-performance turbomachinery since they offer little or no cross-coupled stiffnesses with enhanced rotordynamic stability. The paper details the rotordynamic performance and temperature characteristics of two prototype oil-free TCs; one supported on foil journal and thrust bearings and the other one is supported on FPTP journal bearings and foil thrust bearings of identical sizes (outer diameter (OD) and inner diameter (ID)) with the same aerodynamic components. The tests of the oil-free TCs, each consisting of a hollow rotor (∼0.4 kg and ∼23 mm in OD at the bearing locations), are performed for various imbalances in noise, vibration, and harshness (NVH; i.e., cold air driven rotordynamics rig) and gas stand test facilities up to 130 krpm. No forced cooling air flow streams are supplied to the test bearings and rotor. The measurements demonstrate the stable performance of the rotor–gas bearing systems in an ambient NVH test cell with cold forced air into the turbine inlet. Post-test inspection of the test FPTPGBs after the hot gas stand tests evidences seizure of the hottest bearing, thereby revealing a notable reduction in bearing clearance as the rotor temperature increases. The compliant FPTPGBs offer a sound solution for stable rotor support only at an ambient temperature condition while demonstrating less tolerance for shaft growth, centrifugal, and thermal, beyond its clearance. The current measurements give confidence in the present GFB technology for ready application into automotive TCs for passenger car and commercial vehicle applications with increased reliability.


Author(s):  
Luis San Andre´s ◽  
Keun Ryu

Gas film bearings enable the successful deployment of high-speed micro-turbomachinery. Foil bearings are in use; however, cost and lack of calibrated predictive tools prevent their widespread application. Other types of bearing configurations, simpler to manufacture and fully engineered, are favored by commercial turbomachinery manufacturers. Externally pressurized tilting pad bearings offer a sound solution for stable rotor support. This paper reports measurements of the rotordynamic response of a rigid rotor, 0.825 kg and 28.6 mm in diameter, supported on flexure pivot tilting pad hybrid gas bearings. The tests are performed for various imbalances, increasing supply pressures, and under load-on-pad (LOP) and load-between-pad (LBP) configurations. Presently, the initial condition of the test bearings shows sustained wear and dissimilar pad clearances after extensive testing reported earlier, see Ref. [1]. In the current measurements, there are no noticeable differences in rotor responses for both LOP and LBP configurations due to the light-weight rotor, i.e. small static load acting on each bearing. External pressurization into the bearings increases their direct stiffnesses and reduces their damping, while raising the system critical speeds with a notable reduction in modal damping ratios. The rotor supported on the worn bearings shows a ∼10% drop in first critical speeds and roughly similar modal damping than when tested with pristine bearings. Pressurization into the bearings leads to large times for rotor deceleration, thus demonstrating the little viscous drag typical of gas bearings. Rotor deceleration tests with manually controlled supply pressures eliminate the passage through critical speeds, thus paving a path for rotordynamic performance without large amplitude motions over extended regions of shaft speed. The rotordynamic analysis shows critical speeds and peak amplitudes of motion agreeing very well with the measurements. The synchronous rotor responses for increasing imbalances demonstrate the test system linearity. Superior stability and predictable performance of pressurized flexure pivot gas bearings can further their implementation in high performance oil-free microturbomachinery. More importantly, the measurements show the reliable performance of the worn bearings even when operating with enlarged and uneven clearances.


1991 ◽  
Vol 113 (3) ◽  
pp. 526-532 ◽  
Author(s):  
K. W. Kim ◽  
C. M. Rodkiewicz

The presented analytical consideration of tilting-pad bearings incorporates simultaneously the changes in viscosity (due to viscous dissipation) and in the nonambient inlet pressure (due to momentum depletion within the fore-region). The solution provides the following quantities: film temperature distributions, pressure distribution, maximum temperature of the pad, load capacity, friction force, coordinate of the center of pressure, and coordinate of the pivot point. Comparison with the case when the inlet pressure is assumed to be ambient indicates the significance of the pressure build-up in the fore-region.


Author(s):  
Daejong Kim ◽  
Aaron Rimpel

Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery, and FPTPGBs with radially compliant pads (FPTPGB-Cs) permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with a ∼28.6 mm, 0.8 kg rotor above 120 krpm for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances, and viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


2011 ◽  
Vol 368-373 ◽  
pp. 1392-1395 ◽  
Author(s):  
Quan Zhou ◽  
Yu Hou ◽  
Ru Gang Chen

Because of the low power loss and high stability, foil bearings are suitable lubrication components for high speed rotational systems. At present, the foil bearings used in actual applications almost have complicated structure and are hard to manufacture. In this paper, two kinds of foil thrust bearings with simple structure are presented. Configurations of these two foil thrust bearings are introduced; meanwhile, the load capacity and running stability are also tested in a high speed micro turbine. It is shown that viscoelastic supported foil thrust bearing has higher load capacity and hemisphere convex dots supported foil thrust bearing is more stable in high speed operational condition.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Aaron Rimpel ◽  
Daejong Kim

Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery and FPTPGBs with radially compliant pads permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict the rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and to compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with an ∼28.6 mm, 0.8 kg rotor above 120 krpm, for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances and the viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.


Author(s):  
Kyuho Sim ◽  
Daejong Kim

A new thermohydrodynamic (THD) analysis for compliant flexure pivot tilting pad gas bearings is presented. Unlike many previous THD analyses on oil-lubricated bearings and gas bearings, the new THD analysis solves the rotor and bearing pad temperatures as well as the gas film temperature simultaneously upon adequate thermal boundary conditions on the bearing shell and rotor ends are given. All the previous studies assume that the rotor and bearing temperatures are given as thermal boundary conditions to solve 2D or 3D energy equation in the bearing film. The developed computational method is unique because these boundary conditions are found internally through global energy balance around the bearing. A numerical procedure involves solving the generalized Reynolds equation, 3D energy equation, and heat flux equations around the bearings simultaneously through iterative process. Furthermore, rotor thermal and centrifugal expansions are also considered during the iteration. Parametric studies were performed for the various temperature fields, i.e., rotor temperature, gas film temperature, and pad temperature as a function of nominal clearance, external load, and various thermal boundary conditions. Nominal clearance showed the most significant influence on overall THD behavior. The analyses also show that the rotor-bearing system can go to thermal runaway if adequate cooling mechanism does not exist. Linear perturbation analysis was also performed to investigate the thermal effects on the rotordynamic performance. Rotor thermal growth and increased viscosity increased direct stiffness and damping coefficients compared to the isothermal case.


Author(s):  
Keun Ryu ◽  
Luis San Andrés

Implementing gas foil bearings (GFBs) in micro gas turbine engines is a proven approach to improve system efficiency and reliability. Adequate thermal management for operation at high temperatures, such as in a gas turbine or a turbocharger, is important to control thermal growth of components and to remove efficiently mechanical energy from the rotor mainly. The paper presents a test rotor supported on GFBs operating with a heated shaft and reports components temperatures and shaft motions at an operating speed of 37 krpm. An electric cartridge heater loosely inserted in the hollow rotor warms the test system. Thermocouples and noncontact infrared thermometers record temperatures on the bearing sleeve and rotor outer diameter (OD), respectively. No forced cooling air flow streams were supplied to the bearings and rotor, in spite of the high temperature induced by the heater on the shaft outer surface. With the rotor spinning, the tests consisted of heating the rotor to a set temperature, recording the system component temperatures until reaching thermal equilibrium in  ∼ 60 min, and stepping the heater set temperature by 200 °C. The experiments proceeded without incident until the heater set temperature equaled 600 °C. Ten minutes into the test, noise became apparent and the rotor stopped abruptly. The unusual operating condition, without cooling flow and a too large increment in rotor temperature, reaching 250 °C, led to the incident which destroyed one of the foil bearings. Post-test inspection evidenced seizure of the hottest bearing (closest to the heater) with melting of the top foil at the locations where it rests on the underspring crests (bumps). Analysis reveals a notable reduction in bearing clearance as the rotor temperature increases until seizure occurs. Upon contact between the rotor and top foil, dry-friction quickly generated vast amounts of energy that melted the protective coating and metal top foil. Rather than a reliability issue with the foil bearings, the experimental results show poor operating procedure and ignorance on the system behavior (predictions). A cautionary tale and a lesson in humility follow.


Author(s):  
Tae Ho Kim ◽  
Yong-Bok Lee ◽  
Tae Young Kim ◽  
Kyong Ho Jeong

Engineered design of modern efficient turbomachinery based on accurate model predictions is of importance as operating speed and rate power increase. Industrial applications use hydrodynamic fluid film bearings as rotor support elements due to their advantages over rolling element bearings in operating speed, system stability (rotordynamic and thermal), and maintenance life. Recently, microturbomachinery (<250 kW) implement gas foil bearings (GFBs) as its rotor supports due to its compact design without lubricant supply systems and enhanced stability characteristics. To meet the needs from manufacturers, the turbomachinery development procedure includes a rotordynamic design and a gas foil journal bearing (GFJB) analysis in general. The present research focuses on the role of gas foil thrust bearings (GFJBs) supporting axial load (static and dynamic) in an oil-free turbo blower with a 75kW (100 HP) rate power at 30,000 rpm. The turbo blower provides a compressed air with a pressure ratio of 1.6 at a mass flow rate of 0.92 kg/s, using a centrifugal impeller installed at the rotor end. Two GFJBs with a diameter of 66mm and a length of 50mm and one pair of GFTB with an outer diameter of 144 mm and an inner diameter of 74 mm support the rotor with an axial length of 493 mm and a weight of 12.7 kg. A finite element rotordynamic model prediction using predicted linearized GFJB force coefficients designs the rotor-GFB system with stability at the rotor speed of 30,000 rpm. Model predictions of the GFTB show axial load carrying performance. Experimental tests on the designed turbo blower, however, demonstrate unexpected large amplitudes of subsynchronous rotor lateral motions. Post-inspection reveals minor rubbing signs on the GFJB top foils and significant wear on the GFTB top foil. Therefore, GFTB is redesigned to have the larger outer diameter of 166 mm for the enhanced load capacity, i.e., 145%, increase in its loading area. The modification improves the rotor-GFB system performance with dominant synchronous motions up to the rate speed of 30,000 rpm. In addition, the paper studies the effect of GFTB tilting angles on the system performance. Insertion of shims between the GFTB brackets changes the bearing tilting angles. Model predictions show the decrease in the thrust load capacity by as large as 86% by increase in the tilting angle to 0.0006 radian (0.03438 deg). Experimental test data verify the computational model predictions.


Sign in / Sign up

Export Citation Format

Share Document