Investigation of Cross Flow in Double Entry Turbocharger Turbines

Author(s):  
Dominik Lückmann ◽  
Max Stadermann ◽  
Richard Aymanns ◽  
S. Pischinger

The downsizing of combustion engines has become the major strategy within the automotive industry to meet the increasing demands in terms of fuel economy and harmful emissions. Furthermore, it is important to fulfil the customers expectations in terms of drivability by increasing the power density and transient performance of the engines. The key technology to reach these ambitious targets is the enhanced utilization of exhaust pulses on turbocharged engines. In four cylinder gasoline engine applications this is mainly realized by the use of double entry turbines or variabilities in the exhaust valve train. During the designing and matching process of double entry turbines it is still a major challenge to predict the turbine power output and accurately model its interaction with the engine. In the past few years, several authors have published measurement and simulation technologies aimed at enhanced modelling quality. Most of these approaches are based on the introduction of different flow conditions which help to describe the thermodynamic performance under various pulsating boundary conditions. Within an average engine cycle, the turbine operates under equal, single and unequal admissions. Furthermore, the evaluation of a turbine interacting with a four cylinder gasoline engine shows that cross flow between both turbine scrolls can occur during the blow-down phase of the cylinders. In this phase, the temperature and pressure upstream of the turbine reach their peak values within the complete engine cycle. Therefore, this phase is most crucial for the conversion of the exhaust energy into mechanical energy, which drives the compressor impeller of the turbocharger. This work focuses on the results of stationary hot gas measurements and 3D CFD simulations of the cross flow phenomena to gain a deeper understanding of the scroll interaction in double entry turbines and its impact on engine performance. The findings were used to improve the modeling quality of double entry turbines in 1D engine process simulations, especially during the exhaust blow down where cross flow between the dividing wall and the turbine wheel occurs. The new methodology to quantify the amount of cross flow with a hot gas test has shown that the cross flow rate of a twin scroll turbine can reach values as high as 35% of the overall flow rate entering the turbine housing, whereas this value can be significantly reduced by using a segment turbine housing. The new map based turbine model, which enables predictive simulations, covers all engine relevant flow conditions of the turbine including cross flow. This is important because the cross flow has a large impact on the exhaust pulse separation and thus on the residual gas fraction of the cylinders after the gas exchange.

Author(s):  
Till Heinemann ◽  
Stefan Becker

In thermal power plants equipped with air-cooled condensers, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously been studied only numerically or using blade mounted strain gauges. For this study, Laser Scanning Vibrometry was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low pressure axial fan, resulting in spectral, phase resolved surface vibration patterns of the fan blades. Two distinct operating points were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, overall blade vibration increased by 100% at low fan flow rate due to cross-flow, and by 20% at high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation rate harmonics were amplified, i.a. a synchronous blade tip flapping was strongly excited at the blade pass frequency.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3374 ◽  
Author(s):  
Yugang Wang ◽  
Xiang Huang ◽  
Li Li

This paper presents a comparative study of the cross-flow regenerative heat and mass exchanger (HMX) and the conventional cross-flow HMX for indirect evaporative cooling (IEC) with numerical methods. The objective of this study is mainly to clarify the applicability of the two HMXs. The numerical model was built and validated by existing experimental data. The difference in heat and mass transfer between the two HMXs was revealed by analyzing the change of the temperature and moisture content of the air, and the influence of the main operating parameters on the cooling performance of the HMXs was analyzed. In the typical operating conditions, when the HMXs are used alone, the cooling performance of the regenerative HMX is better than that of the conventional HMX under low supply air flow rate. When the HMXs are used in the multistage evaporative cooling systems with high supply air flow rate, the conventional HMX is more suitable as the first stage of the system to pre-cool the supply air, while the regenerative HMX is more suitable as the second stage to re-cool the supply air.


2018 ◽  
Vol 851 ◽  
pp. 288-316 ◽  
Author(s):  
A. Vidal ◽  
H. M. Nagib ◽  
P. Schlatter ◽  
R. Vinuesa

Direct numerical simulations (DNSs) are performed to analyse the secondary flow of Prandtl’s second kind in fully developed spanwise-periodic channels with in-plane sinusoidal walls. The secondary flow is characterized for different combinations of wave parameters defining the wall geometry at $Re_{h}=2500$ and 5000, where $h$ is the half-height of the channel. The total cross-flow rate in the channel $Q_{yz}$ is defined along with a theoretical model to predict its behaviour. Interaction between the secondary flows from opposite walls is observed if $\unicode[STIX]{x1D706}\simeq h\simeq A$, where $A$ and $\unicode[STIX]{x1D706}$ are the amplitude and wavelength of the sinusoidal function defining the wall geometry. As the outer-scaled wavelength ($\unicode[STIX]{x1D706}/h$) is reduced, the secondary vortices become smaller and faster, increasing the total cross-flow rate per wall. However, if the inner-scaled wavelength ($\unicode[STIX]{x1D706}^{+}$) is below 130 viscous units, the cross-flow decays for smaller wavelengths. By analysing cases in which the wavelength of the wall is much smaller than the half-height of the channel $\unicode[STIX]{x1D706}\ll h$, we show that the cross-flow distribution depends almost entirely on the separation between the scales of the instantaneous vortices, where the upper and lower bounds are determined by $\unicode[STIX]{x1D706}/h$ and $\unicode[STIX]{x1D706}^{+}$, respectively. Therefore, the distribution of the secondary flow relative to the size of the wave at a given $Re_{h}$ can be replicated at higher $Re_{h}$ by decreasing $\unicode[STIX]{x1D706}/h$ and keeping $\unicode[STIX]{x1D706}^{+}$ constant. The mechanisms that contribute to the mean cross-flow are analysed in terms of the Reynolds stresses and using quadrant analysis to evaluate the probability density function of the bursting events. These events are further classified with respect to the sign of their instantaneous spanwise velocities. Sweeping events and ejections are preferentially located in the valleys and peaks of the wall, respectively. The sweeps direct the instantaneous cross-flow from the core of the channel towards the wall, turning in the wall-tangent direction towards the peaks. The ejections drive the instantaneous cross-flow from the near-wall region towards the core. This preferential behaviour is identified as one of the main contributors to the secondary flow.


Author(s):  
K. M. Salahuddin ◽  
Nobuyuki Oshima ◽  
Litan Kumar Saha

In this article we presented the recent activities in the field of gas flow in the micro channel and porous media of a polymer electrolyte fuel cell (PEFC). The gas flow behavior in the micro-channel, especially in the case of serpentine channel is very complex due to the appearance of cross flow through the gas diffusion layer (GDL). The gas flow behavior in the separator channel and GDL of a PEFC has been studied by using a transient, isothermal and three dimensional numerical models. To predict gas flow phenomena accurately the precise calculation of mass conversation is necessary which is strictly maintained in our present simulation. The effects of physical characteristics and geometrical properties have been investigated to quantify the amount of cross flow and pressure loss. The cross flow has been investigated in terms of volume mass flux through the GDL under the rib. The ratio cross flow rate to the total flow rate increases when gas channel pitch length decreased. Moreover, with increasing of permeability this ratio also increases. The effect of cross flow and bend region characteristics on the pressure loss has been identified. In addition, to isolate the contribution of cross flow on the performance of fuel cell, the simulation was carried out with electrochemical reaction using parallel straight channel. We designed a parallel flow field to induce artificial cross flow through the GDL. The numerical results show that the flow cross-over through the GDL under the rib significantly facilitate the oxygen transport towards the catalyst layer. Therefore, it is possible to overcome the oxygen transport limitation. Consequently, the cross flow can increase the current density by reducing the oxygen transport limitation, although this also increases the non-uniformity in current density.


Author(s):  
Hidetaka Taira ◽  
Hongtan Liu

Serpentine flow-fields are widely used in proton exchange membrane (PEM) fuel cells due to their various advantages, including providing a proper compromise between pressure drop and water removal capability. One of the advantages of serpentine flow fields is the cross-flow under the land through the gas diffusion layer (GDL) due to the pressure difference between adjacent channels. In this study, a three-dimensional PEM fuel cell model is developed to study the cross-flow effect under the land for both across and along the land directions. Simulation results of the flow distribution along and across the channel, and the relationship between the cross-flow and the pressure difference are presented. A parametric study is conducted to investigate the effect of the GDL permeability on the cross-flow rate. The cross-flow rate increases as the permeability becomes larger because the cross-flow velocity. However, cross-flow rate reaches an asymptotic value when the permeability is greater than 10−9 (m2) since the pressure difference between adjacent channels becomes smaller. The effect of the cross-flow on the local oxygen mass fraction is also investigated. The results show that oxygen concentrations in some locations are significantly higher due to the cross-flow under the land and secondary flows in the channel. Finally, by comparing average current densities between under the channels and the land areas, it is shown that the performance of the cell gradually decreases across the channel/land direction.


2017 ◽  
Vol 17 (17th International Conference) ◽  
pp. 1-21
Author(s):  
Abd Elnaby Kabeel ◽  
Medhat Elkelawy ◽  
Hagar Bastawissi ◽  
Ahmed El-Banna

2001 ◽  
Vol 1 (5-6) ◽  
pp. 39-47
Author(s):  
Y. Matsui ◽  
A. Yuasa ◽  
F. Colas

The effects of operational modes on the removal of a synthetic organic chemical (SOC) in natural water by powdered activated carbon (PAC) during ultrafiltration (UF) were studied, through model simulations and experiments. The removal percentage of the trace SOC was independent of its influent concentration for a given PAC dose. The minimum PAC dosage required to achieve a desired effluent concentration could quickly be optimized from the C/C0 plot as a function of the PAC dosage. The cross-flow operation was not advantageous over the dead-end regarding the SOC removal. Added PAC was re-circulated as a suspension in the UF loop for only a short time even under the cross-flow velocity of gt; 1.0 m/s. The cross-flow condition did not contribute much to the suspending of PAC. The pulse PAC addition at the beginning of a filtration cycle resulted in somewhat better SOC removal than the continuous PAC addition. The increased NOM loading on PAC which was dosed in a pulse and stayed longer in the UF loop could possibly further decrease the adsorption rate.


Sign in / Sign up

Export Citation Format

Share Document