Nonlinear Harmonic Method Applied to Turbine Conjugate Heat Transfer Analysis for Efficient Simulation of Hot Streak Clocking and Unsteady Heat Transfer

Author(s):  
Omid Z. Mehdizadeh ◽  
Stéphane Vilmin ◽  
Benoît Tartinville ◽  
Charles Hirsch

High pressure turbine (HPT) optimum thermal design is critical in further improving gas turbine efficiency. However, this is a challenging task as it requires accurate simulation of unsteady flows in conjunction with heat transfer simulation of the airfoil solid structure, which in turn requires large computational resources. In this work, the nonlinear harmonic (NLH) method is applied to conjugate heat transfer (CHT) simulation to provide an effective tool for turbine thermal design and analysis. The NLH method can be seen as a computationally affordable alternative to the traditional time-marching unsteady simulation particularly in turbomachinery applications, where the unsteadiness is mostly periodic. When applied to CHT simulations, it also addresses the difficulty of dealing with large time-scale mismatch between fluid and solid domains by casting the periodic perturbations into the frequency domain. Furthermore, it naturally allows for the study of hot streaks clocking effects by means of space harmonics. These capabilities are demonstrated on the HPT of the NASA/GE Energy Efficient Engine (E3), where hot streaks clocking effect on the metal temperature of the nozzle guide vane (NGV) is simulated. Also, the time variation of the rotor blade metal temperature as it crosses the hot streaks is simulated. The results confirm that, with only a single NLH solution, different aspects of the thermal design of a multi-stage turbine can be explored with little additional computational effort with respect to the standard steady approach.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

Abstract This paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

AbstractThis paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


Author(s):  
Takeshi Horiuchi ◽  
Tomoki Taniguchi ◽  
Ryozo Tanaka ◽  
Masanori Ryu ◽  
Masahide Kazari

In this paper, the Conjugate Heat Transfer (CHT) analysis, which utilizes commercial software STAR-CCM+ with detailed models and practical mesh size, was performed to the first stage cooled turbine airfoils for an industrial gas turbine produced by Kawasaki Heavy Industries, Ltd. (KHI). First its estimation accuracy was evaluated by comparing with the measurement results obtained with thermal index paint (TIP) and a pyrometer. After the validation of the CHT analysis, the metal temperature distribution was understood with the flow phenomena associated with it from the analysis results. To the parts where the metal temperature is locally high, then, the improvements of the cooling performance were considered with the CHT analysis and their effects were finally confirmed by measuring the metal temperature in the actual engine. The investigation reveals that the CHT analysis, which is validated with measurement results, makes it possible for cooling designers to efficiently improve the cooling performance of turbine airfoils with the adequate estimation accuracy, thus enhancing their durability for the reliability of gas turbines.


Author(s):  
Ron-Ho Ni ◽  
William Humber ◽  
George Fan ◽  
John P. Clark ◽  
Richard J. Anthony ◽  
...  

Conjugate heat transfer analysis was conducted on a 648 hole film cooled turbine vane using Code Leo and compared to experimental results obtained at the Air Force Research Laboratory Turbine Research Facility. An unstructured mesh with fully resolved film holes for both fluid and solid domains was used to conduct the conjugate heat transfer simulation on a desktop PC with eight cores. Initial heat flux and surface metal temperature predictions showed reasonable agreement with heat flux measurements but under prediction of surface metal temperature values. Root cause analysis was performed, leading to two refinements. First, a thermal barrier coating layer was introduced into the analysis to account for the insulating properties of the Kapton layer used for the heat flux gauges. Second, inlet boundary conditions were updated to more accurately reflect rig measurement conditions. The resulting surface metal temperature predictions showed excellent agreement relative to measured results (+/− 5 degrees K).


2020 ◽  
Vol 37 (4) ◽  
pp. 327-342
Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S Prasad ◽  
Nekkanti Sitaram

AbstractThe effect of conjugate heat transfer is investigated on a first stage nozzle guide vane (NGV) of a high pressure gas turbine which has both impingement and film cooling holes. The study is carried out computationally by considering a linear cascade domain, having two passages formed between the vanes, with a chord length of 228 mm and spacing of 200 mm. The effect of (i) coolant and mainstream Reynolds numbers, (ii) thermal conductivity (iii) temperature difference between the mainstream and coolant at the internal surface of the nozzle guide vane are investigated under conjugate thermal condition. The results show that, with increasing coolant Reynolds number the lower conducting material shows larger percentage decrease in surface temperature as compared to the higher conducting material. However, the internal surface temperature is nearly independent of mainstream Reynolds number variation but shows significant variation for higher conducting material. Further, the temperature gradient within the solid thickness of NGV is higher for the lower conductivity material.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
B. Lad ◽  
L. He

Aerothermnal design capability for cooled high pressure turbines depends on resolving complex physical processes such as coolant mixing, coupled fluid-solid convection-conduction heat transfer, and their interactions. This paper presents the development of the generalised Immersed Mesh Block 2 (IMB2) method, which allows high resolution predictions of all these processes to be conducted for a fully cooled turbine stage within a couple of days. The method consists of creating high density meshes of cooling holes to capture the high flow gradients in the fluid domain and separately, generating corresponding meshes for the local metal layer with high temperature gradient. These can then be inserted rapidly into a host turbine domain for conjugate heat transfer as immersed mesh blocks for fluids (IMBf) and metals (IMBm). In this way, conjugate heat transfer meshes of entire rows of cooling holes can be generated and inserted into a host mesh within minutes. The composite domain is then solved with simultaneous coupling between all the fluid and metal IMBs, as well as the host mesh. The paper presents the methodology of this approach and demonstrates its application to a transonic, fully cooled nozzle guide vane.


Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of HPT (High Pressure Turbine) cooled components of the BHGE NovaLT™ 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D CFD analysis and the heat conduction in the solid is carried out through a 3D FEM solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine, in order to validate the presented procedure.


2014 ◽  
Vol 6 ◽  
pp. 146523 ◽  
Author(s):  
Leiyong Jiang ◽  
Xijia Wu ◽  
Zhong Zhang

In order to assess the life of gas turbine critical components, it is essential to adequately specify their aerothermodynamic working environments. Steady-state analyses of the flow field and conjugate heat transfer of an internally air-cooled nozzle guide vane (NGV) and shrouds of a gas turbine engine at baseline operating conditions are numerically investigated. A high-fidelity CFD model is generated and the simulations are carried out with properly defined boundary conditions. The features of the complicated flow and temperature fields are revealed. In general, the Mach number is lower and the temperature is higher on the NGV pressure side than those on the suction side. There are two high temperature regions on the pressure side, and the temperature across the middle section is relatively low. These findings are closely related to the locations of the holes and outlets of the cooling flow passage, and consistent with the field observations of damaged NGVs. As a technology demonstration, the results provide required information for the life analysis of the NGV/shrouds assembly and improvement of the cooling flow arrangement.


Author(s):  
Kasem Eid Ragab ◽  
Lamyaa El-Gabry

Abstract In the current study, a numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes (NGVs) using three-dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled NGV and the film-cooled NGV. A finite volume based commercial code was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modeling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data; the same parameters were used afterward to model the industrial NGVs.


Sign in / Sign up

Export Citation Format

Share Document