Effect of RANS Method on Stall Inception Eigenvalue Approach

Author(s):  
Zhe Xie ◽  
Yangwei Liu ◽  
Xiaohua Liu ◽  
Lipeng Lu ◽  
Xiaofeng Sun

The effect of mesh, turbulence model and discretization scheme in Reynolds-averaged Navier-Stokes method (RANS) on a stall inception eigenvalue approach is investigated in a transonic compressor rotor. The most influencing flow structures on the result of eigenvalue approach are also identified. The compressor stall point is calculated by a recently developed eigenvalue model. Based on the 3D Navier-Stokes equations, the body-force term and small disturbance were used to transform the original equations into the eigenvalue approach. Because the eigenvalue mainly relies on the results from RANS, the sensitivity of the eigenvalue to the mesh density, turbulence model, and numerical scheme needs to be clearly identified before it is applied to engineering. The effect of mesh density is firstly specified. Several grids with different densities and distributions are employed in RANS. The eigenvalue results indicate that the solution converges at the same grid density as RANS does. Besides, the eigenvalue approach has the ability to predict a more accurate stall point compare to RANS with a coarse computational grid. The investigation of the detailed flow field indicates that the flow structures in the vicinity of blade tip region change significantly with three different grid densities, the eigenvalue is also influenced. Two important flow mechanisms are found to be the decisive factors for the eigenvalue, namely the blockage generated by the shock-vortex interaction, the separated flow and the wake near the trailing edge. These flow patterns are consistent with the flow mechanisms of the compressor stall inception. Further investigations are conducted with four different turbulence models combined with three different spatial discretization schemes. Calculated eigenvalue proves that the turbulence model changes the eigenvalue with an over-prediction of stall point at about 1%. The spatial discretization scheme has small effect on stall point prediction using k-ε and SA models, whereas it has large effect when using SST model. The scheme shows great influence in the simulations with specific turbulence model by changing the predicted stall point at least 1.7%. The existence of blockage, the separation and the wake flow are identified as the major and secondary factor which contributes to an unstable prediction of eigenvalue approach, respectively.

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Zhe Xie ◽  
Yangwei Liu ◽  
Xiaohua Liu ◽  
Lipeng Lu ◽  
Xiaofeng Sun

The eigenvalue approach is a recently developed compressor stability model used to predict stall onset. In this model, the flow field from a Reynolds-averaged Navier–Stokes (RANS) simulation provides the basic flow. This paper presents the effect of the RANS methods (including the computational grid, the turbulence model, and the spatial discretization scheme) on the eigenvalue and investigates the most influencing flow structures to the eigenvalue. The test compressor was the transonic compressor of NASA Rotor 37. Three individual meshes with different grid densities were used to validate the grid independence, and the results indicated that RANS simulation and eigenvalue calculation obtain grid independence at the same grid density. Then, the effect of four turbulence models (including Spalart–Allmaras (SA) turbulence model, two different k–ε models with the extended wall function model (EWFKE), and the Yang–Shih model (YSKE), and k–ω shear stress transport (SST) model), and three spatial discretization schemes (the central scheme, the flux difference splitting (FDS) scheme, and the symmetric total variation diminishing (STVD)) was also studied. Further investigation showed that the SA turbulence model combined with the STVD scheme provided the best stall point prediction, with a relative error of 0.05%. Detailed exploration of the three-dimensional flow field revealed that there were two flow patterns near the blade tip necessary for precisely predicting stall onset: the flow blockage generated by the shockwave-tip leakage vortex (TLV) interaction, and the trailing edge separation and corresponding wake flow. The effect of the blockage was greater than the effect of the trailing edge flow.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 672
Author(s):  
Wagenbrenner ◽  
Forthofer ◽  
Page ◽  
Butler

An open source computational fluid dynamics (CFD) solver has been incorporated into the WindNinja modeling framework. WindNinja is widely used by wildland fire managers, as well as researchers and practitioners in other fields, such as wind energy, wind erosion, and search and rescue. Here, we describe the CFD solver and evaluate its performance against the WindNinja conservation of mass (COM) solver, and previously published large-eddy simulations (LES), for three field campaigns with varying terrain complexity: Askervein Hill, Bolund Hill, and Big Southern Butte. We also compare the effects of two model settings in the CFD solver, namely the discretization scheme used for the advection term of the momentum equation and the turbulence model, and provide guidance on model sensitivity to these settings. Additionally, we investigate the computational mesh and difficulties regarding terrain representation. Two important findings from this work are: (1) CFD solver predictions are significantly better than COM solver predictions at windward and lee side observation locations, but no difference was found in predicted speed-up at ridgetop locations between the two solvers, and (2) the choice of discretization scheme for advection has a significantly larger effect on the simulated winds than the choice of turbulence model.


2007 ◽  
Vol 51 (04) ◽  
pp. 343-356
Author(s):  
Sofia Werner ◽  
Alessio Pistidda ◽  
Lars Larsson ◽  
Björn Regnstrom

A wind tunnel test of an America's Cup keel model is used for validation of one Reynolds-averaged Navier Stokes (RANS) code and one potential flow/boundary layer code. The effects of grid size, stagnation point anomaly, and turbulence model on the RANS results are discussed. Various setups of the potential code are compared. The ability of both methods to predict forces and trends are shown. The errors of the RANS code are slightly larger than the experimental error, whereas the potential flow/boundary layer results are within the experimental uncertainty, provided that a correct panelization is used. A comparison of the experimental wake flow pattern to the one computed with RANS is presented. The k-w turbulence model is shown to give the best predictions of the wake.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Filippo Avanzi ◽  
Francesco De Vanna ◽  
Yin Ruan ◽  
Ernesto Benini

This study discusses a general framework to identify the unsteady features of a flow past an oscillating aerofoil in deep dynamic stall conditions. In particular, the work aims at demonstrating the advantages for the design process of the Spectral Proper Orthogonal Decomposition in accurately producing reliable reduced models of CFD systems and comparing this technique with standard snapshot-based models. Reynolds-Averaged Navier-Stokes system of equations, coupled with k−ω SST turbulence model, is used to produce the dataset, the latter consisting of a two-dimensional NACA 0012 aerofoil in the pitching motion. Modal analysis is performed on both velocity and pressure fields showing that, for vectored values, a proper tuning of the filtering process allows for better results compared to snapshot formulations and extract highly correlated coherent flow structures otherwise undetected. Wider filters, in particular, produce enhanced coherence without affecting the typical frequency response of the coupled modes. Conversely, the pressure field decomposition is drastically affected by the windowing properties. In conclusion, the low-order spectral reconstruction of the pressure field allows for an excellent prediction of aerodynamic loads. Moreover, the analysis shows that snapshot-based models better perform on the CFD values during the pitching cycle, while spectral-based methods better fit the loads’ fluctuations.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Author(s):  
Sidharath Sharma ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson ◽  
John M. Allport

The ported shroud (PS) self-recirculating casing treatment is widely used to delay the onset of the surge by enhancing the aerodynamic stability of the turbocharger compressor. The increase in the stable operation region of the turbocharger compressor is achieved by recirculating the low momentum fluid that blocks the blade passage to the compressor inlet through a ported shroud cavity. While the ported shroud design delays surge, it comes with a small penalty in efficiency. This work presents an investigation of the flow processes associated with a ported shroud compressor and quantifies the effect of these flow mechanisms on the compressor operation. The full compressor stage is numerically modelled using a Reynolds Averaged Navier-Stokes (RANS) approach employing the shear stress transport (SST) turbulence model for steady state simulations at the design and near surge conditions. The wheel rotation is modelled using a multiple reference frame (MRF) approach. The results show that the flow exits the PS cavity at the near surge condition in the form of three jet-like structures of varying velocity amplitudes. Net entropy generation in the compressor model is used to assess the influence of the ported shroud design on the compressor losses, and the results indicate a small Inlet-PS mixing region is the primary source of entropy generation in the near surge conditions. The analysis also explores the trends of entropy generation at the design and the near surge condition across the different speed lines. The results show that the primary source of entropy generation is the impeller region for the design condition and the inlet-PS cavity region for the near surge condition.


Author(s):  
Albert Ruprecht ◽  
Ralf Neubauer ◽  
Thomas Helmrich

The vortex instability in a spherical pipe trifurcation is investigated by applying a Very Large Eddy Simulation (VLES). For this approach an new adaptive turbulence model based on an extended version of the k-ε model is used. Applying a classical Reynolds-averaged Navier-Stokes-Simulation with the standard k-ε model is not able to forecast the vortex instability. However the prescribed VLES method is capable to predict this flow phenomenon. The obtained results show a reasonable agreement with measurements in a model test.


2016 ◽  
Vol 791 ◽  
Author(s):  
Thomas Köllner ◽  
Karin Schwarzenberger ◽  
Kerstin Eckert ◽  
Thomas Boeck

The transfer of an alcohol, 2-propanol, from an aqueous to an organic phase causes convection due to density differences (Rayleigh convection) and interfacial tension gradients (Marangoni convection). The coupling of the two types of convection leads to short-lived flow structures called eruptions, which were reported in several previous experimental studies. To unravel the mechanism underlying these patterns, three-dimensional direct numerical simulations and corresponding validation experiments were carried out and compared with each other. In the simulations, the Navier–Stokes–Boussinesq equations were solved with a plane interface that couples the two layers including solutal Marangoni effects. Our simulations show excellent agreement with the experimentally observed patterns. On this basis, the origin of the eruptions is explained by a two-step process in which Rayleigh convection continuously produces a concentration distribution that triggers an opposing Marangoni flow.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 404
Author(s):  
Charles Patrick Bounds ◽  
Sudhan Rajasekar ◽  
Mesbah Uddin

This paper presents a study on the flow dynamics involving vehicle interactions. In order to do so, this study first explores aerodynamic prediction capabilities of popular turbulence models used in computational fluid dynamics simulations involving tandem objects and thus, ultimately presents a framework for CFD simulations of ground vehicle platooning using a realistic vehicle model, DrivAer. Considering the availability of experimental data, the simulation methodology is first developed using a tandem arrangement of surface-mounted cubes which requires an understanding on the role of turbulence models and the impacts of the associated turbulence model closure coefficients on the prediction veracity. It was observed that the prediction accuracy of the SST k−ω turbulence model can be significantly improved through the use of a combination of modified values for the closure coefficients. Additionally, the initial validation studies reveal the inability of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach to resolve the far wake, and its frailty in simulating tandem body interactions. The Improved Delayed Detached Eddy Simulations (IDDES) approach can resolve the wakes with a reasonable accuracy. The validated simulation methodology is then applied to the fastback DrivAer model at different longitudinal spacing. The results show that, as the longitudinal spacing is reduced, the trailing car’s drag is increased while the leading car’s drag is decreased which supports prior explanations of vortex impingement as the reason for drag changes. Additionally, unlike the case of platooning involving Ahmed bodies, the trailing model drag does not return to an isolated state value at a two car-length separation. However, the impact of the resolution of the far wake of a detailed DrivAer model, and its implication on the CFD characterization of vehicle interaction aerodynamics need further investigations.


2015 ◽  
Author(s):  
A. Idris ◽  
B. P. Huynh ◽  
Z. Abdullah

Ventilation is a process of changing air in an enclosed space. Air should continuously be withdrawn and replaced by fresh air from a clean external source to maintain internal good air quality, which may referred to air quality within and around the building structures. In natural ventilation the air flow is due through cracks in the building envelope or purposely installed openings. Its can save significant amount of fossil fuel based energy by reducing the needs for mechanical ventilation and air conditioning. Numerical predictions of air velocities and the flow patterns inside the building are determined. To achieve optimum efficiency of natural ventilation, the building design should start from the climatic conditions and orography of the construction to ensure the building permeability to the outside airflow to absorb heat from indoors to reduce temperatures. Effective ventilation in a building will affects the occupant health and productivity. In this work, computational simulation is performed on a real-sized box-room with dimensions 5 m × 5 m × 5 m. Single-sided ventilation is considered whereby openings are located only on the same wall. Two opening of the total area 4 m2 are differently arranged, resulting in 16 configurations to be investigated. A logarithmic wind profile upwind of the building is employed. A commercial Computational Fluid Dynamics (CFD) software package CFD-ACE of ESI group is used. A Reynolds Average Navier Stokes (RANS) turbulence model & LES turbulence model are used to predict the air’s flow rate and air flow pattern. The governing equations for large eddy motion were obtained by filtering the Navier-Stokes and continuity equations. The computational domain was constructed had a height of 4H, width of 9H and length of 13H (H=5m), sufficiently large to avoid disturbance of air flow around the building. From the overall results, the lowest and the highest ventilation rates were obtained with windward opening and leeward opening respectively. The location and arrangement of opening affects ventilation and air flow pattern.


Sign in / Sign up

Export Citation Format

Share Document