Study on Flow Induced Vibration Mechanism of Internal Flow Field in Hydraulic Torque Converter

Author(s):  
Zhifang Ke ◽  
Cheng Liu ◽  
Qingdong Yan ◽  
Wei Wei ◽  
Zemin Song

Abstract By means of pseudo lumped-blade simulation method (PLSM), the blade torque vibration in the torque converter under different speed ratios is extracted and analyzed. The result indicates that the wheel torque pulsation is induced by flow fluctuation, while the mechanism of this flow fluctuation lies in the continuous switch of the blade position of pump and turbine related to the stator. There are mainly two states for stator flow channel: “pass” and “block”. In the “pass” state, the upstream flow channel is aligned to the downstream inlet. Besides, due to the influence of the wake transmitted from the upstream wheel and the vortex vortex arisen from the suction surface of the blade, the blade torque would be relatively larger in the “pass” state. The successively switch between the two states leads to the fluctuations of the blade torque, so as to its wheel torque, which which is the sum of all blade torques. However, due to the inconsistent relative position of the different wheel blades, the “offset” effect leads to the fact that the fluctuation of wheel torque is much smaller than that of the blade torque. In addition, by applying FFT transformation on the transient torque data, the frequency distribution of the blade surface pressure is obtained. It was found that rotation frequencies and interaction frequencies with both upstream and downstream components are significant, and the dominant frequency is always the interaction frequency at different speed ratio, which reveals that the successively switch of the turbine blade position related to stator are the main cause of its flow induced vibration, and this vibration can be transmitted downstream the flow channel, and affect the flow field of other components downstream.

2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


2000 ◽  
Vol 6 (6) ◽  
pp. 417-431 ◽  
Author(s):  
Steven B. Ainley ◽  
Ronald D. Flack

The flow field in the stator of a clear torque converter was studied using laser velocimetry. Five planes in the stator were studied at a speed ratio of 0.800 and three planes were studied at a speed ratio of 0.065. Data complements previously available pump and turbine data. Flow in the stator inlet plane is highly non-uniform due to the complicated flow exiting the turbine. At the 0.800 speed ratio, separation regions are located in the 1/4 and mid-planes in the corepressure corner region. In the 3/4 and exit planes, separation regions are located in the shellsuction corner. In the inlet plane a region of high velocities is located along the shell near the pressure side for a speed ratio of 0.800. The high velocity region migrated to the shell-suction corner and suction side in the 1/4 and mid-planes. The overall velocity field for the speed ratio of 0.065 changes significantly from the inlet plane to the mid-plane. The velocity magnitude generally decreases from the suction to the pressure side of the inlet plane and the general direction of the tangential velocity is from pressure-to-suction surface. At the speed ratio of 0.065 a strong secondary flow in the inlet from suction surface to pressure surface was seen. However, at the high speed ratio a moderate secondary flow in the inlet from pressure surface to suction surface was observed. Mass flow rates at the different planes are within the experimental uncertainty and also within the uncertainty of pump and turbine mass flow rates. The flow in the stator inlet plane are significantly influenced by the turbine relative blade position. The turbine influence on the mid-plane data is significantly less than on the inlet plane data. The influence of the pump blade position on the stator exit plane is small.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095996
Author(s):  
Xiong Pan ◽  
Chen Xinyuan ◽  
Sun Hongjun ◽  
Zhong Jiping ◽  
Zhen Chenping

To understand the effect of internal leakage on the torque field and characteristics of a torque converter (TC), a transient analysis was performed on the internal flow of a TC and the pressure pulsation characteristics of monitoring points in the convection channel. It was found that dividing the leakage area of the TC into a separate watershed improved simulation accuracy by 4%. When there was a leakage area, there were distinct collision, mixing, and assimilation stages between the leakage flow and the main flow. These phenomena caused energy loss that was highest at low speed ratios. However, the leakage flow always accounted for 12% of the main flow regardless of the speed ratio. At the same time, the leakage flow had a larger influence on pressure pulsation inside the TC and especially the low frequency band was more substantial. This shows that the leakage area has a large influence on the TC performance, energy loss, and flow state. Analysis of the leakage area showed that reducing the leakage area helps to improve powertrain performance and fuel economy.


2013 ◽  
Vol 427-429 ◽  
pp. 29-32
Author(s):  
Jin Gang Liu ◽  
Le Xiong ◽  
Yuan Qiang Tan

According to the issue of CVT torque converter internal flow field such as the complexity and not easy to calculate, the channel model of torque converter is established by UG, the grid of channel model is generated by GAMBIT, the internal flow field of torque converter is simulated based on FLUENT while the pressure and velocity distribution of flow field are calculated under three different conditions. The results show that analyzing the flow field of torque converter by FLUENT has certain guiding significance for the design and optimization of torque converter.


1997 ◽  
Vol 119 (3) ◽  
pp. 624-633 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
D. G. Maddock

The objective of this investigation is to understand the steady and the unsteady flow field at the exit of an automotive torque converter turbine and inside the stator with a view toward improving its performance. The measurements were conducted in a stationary frame of reference using a high-frequency response five-hole probe, and the data were processed to derive the flow properties in the relative (turbine) frame of reference. The experimental data were processed in the frequency domain by spectrum analysis and in the temporal-spatial domain by ensemble averaging technique. The flow properties (e.g., pressure and velocity) were resolved into mean, periodic, aperiodic, and unresolved components. A velocity profile similar to that of a fully developed flow was observed at all radii. The periodic data in relative reference frame revealed a small separation zone near the suction surface in the core region. The rms values of the unresolved component were found to be significantly higher in this region. The secondary flow vectors show underturning, radially inward flow in the entire passage with a small region of overturning near the separation zone. The overall flow at the turbine exit was nearly two dimensional in nature except in the zone of flow separation. The unsteady flow data show that unresolved and aperiodic components dominate the unsteadiness in the pressure, whereas the periodic components dominate the unsteadiness in velocities and flow angles. Pressure and velocity fluctuations were moderate, whereas the flow angle fluctuations were found to be high. The overall flow at the exit of turbine was found to be highly unsteady.


2003 ◽  
Vol 9 (6) ◽  
pp. 419-426 ◽  
Author(s):  
A. Habsieger ◽  
R. D. Flack

The average velocity field at the pump–turbine interface in a scaled version of a truck torque converter was studied. Seven different turbine-to-pump rotational-speed ratios were examined, ranging from near stall (0.065) to overspeed (1.050) so as to determine the effect of the speed ratio on the flow field and on the mass flow rate. Laser velocimetry was used to measure the flow velocity through the pump's exit and the turbine's inlet plane. At the pump's exit, as the speed ratio increases, the high velocities move to the pressure-shell corner and then to both the core-suction and the pressureshell corners. Concentrated velocity gradients are largest at the lowest speed ratio, but areas of velocity gradients are largest near the coupling point. Near the coupling point, the flow field is most nonuniform, which yields a highly periodic flow into the turbine inlet. Above the coupling point, the high velocity remains in the pressure-shell corner but separation is seen to develop at the highest speed ratio. At the turbine's inlet, reverse flow is seen at low speed ratios and is an indicator of flow leakage through the core. Velocity gradients are very large at low speed ratios. As the speed ratio increases to the coupling point, the high velocities remain on the shell side. Above the coupling point, the high-velocity flow migrates from the shell side to the core side. The mass flow rate decreases significantly and nonlinearly with the increase of the speed ratio, but for speed ratios greater than 1.000, the negative slope decreases.


Sign in / Sign up

Export Citation Format

Share Document