Numerical Study on Flow and Heat Transfer Characteristics of Pin-Fins With Different Shapes

Author(s):  
Wei Jin ◽  
Ning Jia ◽  
Junmei Wu ◽  
Jiang Lei ◽  
Lin Liu

Abstract Equipping pin-fins in the blade trailing edge is an significant method for enhancing heat transfer. In order to obtain a geometry of pin-fins with good heat transfer effect and small friction factor, six pin-fins (circular, elliptic, oblong, teardrop, lancet and NACA) are selected. The flow and heat transfer features of the rectangular channel with the staggered pin-fins were numerically studied through FLUENT software. The channels with different pin-fins have the same relative spanwise pitch (S/D = 2.5) and streamwise pitch (X/D = 2.5), and the range of Reynolds number is 5×103 to 3×104. The applicability and accuracy of five turbulence models (Standard k-ε, Realizable k-ε, RNG k-ε, Standard k-ω and SST k-ω) are checked by comparing the numerically predicted results with the experimental from literature. It is found that the Realizable k-ε model is better at capturing the microstructure of flow field and has higher precision in predicting the averaged Nusselt number on the heated surface. For the six pin-fins, the leading edge is surrounded by a “U-shaped” strong heat exchange zone, but the vortex systems in the trailing edge are different from each other. Compared to the circular pin-fin, the oblong pin-fin has the best heat transfer enhancement effect, but the friction factor of channel is also larger. While the NACA pin-fin has the lowest friction factor, and the heat transfer effect is second only to the oblong. NACA pin-fin may be applied in blade trailing edge cooling by further optimizing the relative position of the pin-fins in the channel.

2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


Author(s):  
K. Takeishi ◽  
Y. Oda ◽  
Y. Miyake ◽  
Y. Motoda

Local endwall heat transfer characteristics and overall pressure loss of normal and inclined pin fins arrayed in rectangular ducts with flat and wavy endwalls have been investigated to improve the cooling efficiency of jet engine combustor liners. The detailed time-mean local Nusselt number profiles were measured using a naphthalene sublimation method based on the heat/mass transfer analogy. Four kinds of angled pin fins (−45, 0, and +45 degrees with a flat endwall, and −45 degrees with a wavy endwall) were tested and compared with each other. As a result, the average heat transfer coefficient on the flat endwall of normal pin fins was higher than that of the angled pin fins. The average heat transfer coefficient of −45-degree inclined pin fins with a wavy endwall is the same or a little higher than the heat transfer coefficient of those with a flat endwall; however, the pressure loss of the −45-degree inclined pin fins with a wavy endwall is less than the pressure loss of those with a flat endwall. Corresponding numerical simulations using Large Eddy Simulation (LES) with the Mixed Time Scale (MTS) model have been also conducted at Red = 1000 for fully developed regions, and the results have shown good quantitative agreement with mass transfer experiments. It can be concluded that wavy endwalls can realize better heat transfer with less pressure loss as long as the aim consists in enhancing endwall heat transfer in inclined pin-fin channels.


Author(s):  
Lin Tian ◽  
Wei Bai ◽  
Shanhu Xue ◽  
Zipeng Huang ◽  
Qiuwang Wang

The unsteady turbulent flow and heat transfer in rectangular channel with periodic longitudinal vortex generators on up and bottom walls are investigated by standardized k-ε two equation turbulent model combined with standardized wall function which has been validated by steady experimental data. Influence of varying frequency and amplitude of inlet velocity varying by sine function on heat transfer and friction factor are discussed. It is found that parameters such as Tout, Tf, Tw, Nusselt number and the friction factor f vary with time periodically, phase difference occurred compared with inlet velocity. Pulsating frequency has little impact on time averaged Nusselt number. However, when amplitude increases from 0.2us to 0.8us, the heat transfer rate is augmented by about 4%. Furthermore, a critical frequency has been captured when amplitude equals to 0.8us for the channel studied. The current study will deepen understanding of unsteady flow in plate fuel assembly, which can be used in small-scale reactors.


Author(s):  
X. Chi ◽  
T. I.-P. Shih ◽  
K. M. Bryden ◽  
S. Siw ◽  
M. K. Chyu ◽  
...  

CFD simulations were performed to study the flow and heat transfer in a rectangular duct (Wd × Hd, where Wd/Hd = 3) with a staggered array of circular pin fins (D = Hd/4) mounted on the two opposite walls separated by Hd. For this array of pin fins, five different pin-fin height (H) combinations were examined, and they are (1) H = Hd = 4D (i.e., all pin fins extended from wall to wall), (2) H = 3D on both walls, (3) H = 2D on both walls, (4) H = 4D on one wall and H = 2D on the opposite wall, and (5) H = 3D on one wall and H = 2D on the opposite wall. The H values studied give H/D values of 2, 3, and 4 and C/D values of 2, 1, and 0, where C is the distance between the pin-fin tip and the opposite wall. For all cases, the duct wall and pin-fin surface temperatures were maintained at Tw = 313.15 K; the temperature and the speed of the air at the duct inlet were uniform at Tinlet = 343.15 K and U = 8.24 m/s; the pressure at the duct exit was fixed at Pb = 1 atm; and the Reynolds number based on the duct hydraulic diameter and duct inlet conditions was Re = 15,000. This CFD study is based on 3-D steady RANS, where the ensemble averaged continuity, compressible Navier-Stokes, and energy equations are closed by the thermally perfect equation of state and the two-equation realizable k-ε turbulence model with wall functions and with the low-Reynolds number model of Chen and Patel in the near-wall region. The usefulness of this CFD study was assessed by comparing predicted heat-transfer coefficient and friction factor with available experimental data. Results are presented to show how the flow induced by arrays of pin fins of different heights affects temperature distribution, surface heat transfer, and pressure loss.


Author(s):  
N. Kulasekharan ◽  
B. V. S. S. S. Prasad

A numerical investigation is carried out for estimating the influence of rib turbulators on heat transfer and pressure drop of staggered non-uniform pin-fin arrays of different shapes, in a simulated cambered vane trailing region. Pin-fins of square, circular and the diamond shapes, each of two sizes (d) were chosen. The ratio of span-wise pitch to longitudinal pitch is 1.06 and that to the pin size are 4.25 and 3.03, for all pin shapes. A constant heat flux boundary condition is assumed over the coolant channel walls, rib surfaces and circumferential faces of the pin-fins. Reynolds number is varied (20,000<ReD<40,000) by changing the coolant outlet to inlet pressure ratio. Pin end-wall and pin surface averaged heat transfer coefficients and Nusselt numbers are estimated and detailed contours of heat transfer coefficient on both the pressure and suction surfaces are presented. Whilst there is an enhancement in heat transfer and pressure drop with ribs for all the pin shapes, diamond pins have shown the highest enhancement values for both ribbed and non-ribbed configuration.


Sign in / Sign up

Export Citation Format

Share Document