Accurate Field Compressor Inlet Flow Measurement System

Author(s):  
Joshua McConkey ◽  
Richard H. Bunce ◽  
Heiko Claussen

Abstract Understanding the amount of air that enters a gas turbine is important for calculating their performance and efficiency. Flow meters are almost never used to measure that flow in production engines. Typical flow meters are impractical because the air flow into the compressor is very large, up to 1400 lbs/s (635 kg/s) or 1,000,000 ft3/min (28,300 m3/min), and typically an intentional pressure drop is involved in the measurement. This pressure drop negatively impacts the performance of the engine. If inlet air mass flow were known accurately without negatively impacting the engine performance, then engines could be run more efficiently. Currently, inlet mass flow is typically inferred, rather than measured. This leads to increased safety margins which require engines to be run more conservatively, i.e., at lower power. This paper describes a novel, inexpensive, and accurate air mass flow measurement system with negligible impact on engine performance.

Author(s):  
Nana Zhou ◽  
Chen Yang ◽  
David Tucker

Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system, especially during an imposed load transient, can be improved by effective management and control of the cathode air mass flow. The response of gas turbine hardware system and the fuel cell stack to the cathode air mass flow transient was evaluated using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The disturbances of the cathode air mass flow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments. The dynamic responses of the SOFC/GT hybrid system were studied in this paper. The evaluation included distributed temperatures, current densities, heat generation and losses along the fuel cell over the course of the transient along with localized temperature gradients. The reduction of cathode air mass flow resulted in a sharp decrease and partial recovery of the thermal effluent from the fuel cell system in the first 10 seconds. In contrast, the turbine rotational speed did not exhibit a similar trend. The collection of distributed fuel cell and turbine trends obtained will be used in the development of controls to mitigate failure and extend life during operational transients.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Hamisu A Dandajeh ◽  
Talib O Ahmadu

This paper presents an experimental investigation on the influence of engine speed on the combustion characteristics of a Gardener compression ignition engine fueled with rapeseed methyl esther (RME). The engine has a maximum power of 14.4 kW and maximum speed of 1500 rpm. The experiment was carried out at speeds of 750 and 1250 rpm under loads of 4, 8, 12, 16 and 18 kg. Variations of cylinder pressure with crank angle degrees and cylinder volume have been examined. It was found that RME demonstrated short ignition delay primarily due to its high cetane number and leaner fuel properties (equivalence ratio (φ) = 0.22 at 4kg). An increase in thermal efficiency but decrease in volumetric efficiency was recorded due to increased brake loads. Variations in fuel mass flow rate, air mass flow rate, exhaust gas temperatures and equivalence ratio with respect to brake mean effective pressure at engine speeds of 750 and 1250 rpm were also demonstrated in this paper. Higher engine speed of 1250 rpm resulted in higher fuel and air mass flow rates, exhaust temperature, brake power and equivalent ratio but lower volumetric efficiency. Keywords— combustion characteristics, engine performance, engine speed, rapeseed methyl Esther


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1105 ◽  
Author(s):  
Carlo Carcasci ◽  
Lapo Cheli ◽  
Pietro Lubello ◽  
Lorenzo Winchler

This paper presents an off-design analysis of a gas turbine Organic Rankine Cycle (ORC) combined cycle. Combustion turbine performances are significantly affected by fluctuations in ambient conditions, leading to relevant variations in the exhaust gases’ mass flow rate and temperature. The effects of the variation of ambient air temperature have been considered in the simulation of the topper cycle and of the condenser in the bottomer one. Analyses have been performed for different working fluids (toluene, benzene and cyclopentane) and control systems have been introduced on critical parameters, such as oil temperature and air mass flow rate at the condenser fan. Results have highlighted similar power outputs for cycles based on benzene and toluene, while differences as high as 34% have been found for cyclopentane. The power output trend with ambient temperature has been found to be influenced by slope discontinuities in gas turbine exhaust mass flow rate and temperature and by the upper limit imposed on the air mass flow rate at the condenser as well, suggesting the importance of a correct sizing of the component in the design phase. Overall, benzene-based cycle power output has been found to vary between 4518 kW and 3346 kW in the ambient air temperature range considered.


1958 ◽  
Vol 62 (567) ◽  
pp. 219-220
Author(s):  
J. M. Stephenson

The Function of the air intake of a gas turbine engine is to deliver whatever air mass flow is required, with the best recovery of ram stagnation pressure, over the desired range of flight speeds and altitudes.Although it is generally shown in other forms, the performance of an air intake for supersonic flight can be represented on charts very similar to those of a rotating compressor. In Fig. 1 the ratio between ambient (static) pressure and stagnation pressure at the diffuser of a typical intake is shown as a function of corrected inlet and outlet air mass flow (which are themselves functions of the local flow Mach numbers), for a series of flight Mach numbers.


Author(s):  
M. Rabs ◽  
F.-K. Benra ◽  
H. J. Dohmen ◽  
O. Schneider

The present paper gives a contribution to a better understanding of the flow at the rim and in the wheel space of gas turbines. Steady state and time-accurate numerical simulations with a commercial Navier-Stokes solver for a 1.5 stage turbine similar to the model treated in the European Research Project ICAS-GT were conducted. In the framework of a numerical analysis, a validation with experimental results of the test rig at the Technical University of Aachen will be given. In preceding numerical investigations of realistic gas turbine rim cavities with a simplified treatment of the hot gas path (modelling of the main flow path without blades and vanes), so called Kelvin-Helmholtz vortices were found in the area of the gap when using appropriate boundary conditions. The present work shows that these flow instabilities also occur in a 1.5 stage gas turbine model with consideration of the blades and vanes. Therefore, several simulations with different sealing air mass flow rates (CW 7000, 20000, 30000) have been conducted. The results show, that for high sealing air mass flow rates Kelvin-Helmholtz Instabilities are developing. These vortices significantly coin the flow at the rim.


Author(s):  
Abdalla M. Al-Amiri ◽  
Montaser M. Zamzam ◽  
Mustapha A. Chaker ◽  
Cyrus B. Meher-Homji

The use of inlet fogging systems to boost the power for gas turbine engines is well known and extensively applied in the power generation field. In this paper the application of inlet fogging of gas turbine engines utilized in the oil and gas sector for mechanical drive applications is covered. Extracting oil from a well is often limited by the rate of gas extraction, and consequently by the gas turbine power and efficiency. In hot and dry air climates, such as desert areas of the gulf countries, gas turbine engine power output is dramatically reduced because of the reduction in gas turbine air mass flow. This effect is even more predominant with aeroderivative units that are commonly used in this sector. Cooling the air to the wet bulb temperature, will increase the density of the air, increase the air mass flow, and boost the power and efficiency. Consequently the amount of extracted gas, and therefore oil, will be substantially increased. With such a cooling potential, and the current trend in oil prices, inlet fogging can have a very rapid payback. In this paper, the behavior of gas turbines with and without fog injection will be analyzed in detail based on actual field data. Critical parameters such as the power turbine inlet temperature, exhaust temperatures, compressor discharge pressure, the gas generator and power turbine speeds, as increasing stages of fogging are applied are covered. Furthermore, specific issues relating to the design and control of fogging as applied to aeroderivative engines will be discussed.


Author(s):  
Friederike C. Mund ◽  
Pericles Pilidis

Gas turbines for power generation are exposed to a variety of ambient conditions and are therefore bound to breathe contaminated airflow, thus degrading the engines internal gas path. In particular, accumulated debris on the compressor blades reduces engine efficiency. To recover this performance loss, online compressor washes may be performed. Cleaning fluid is injected through the nozzles upstream of the compressor to wash off the debris from the blades. This paper presents a numerical study of a generic compressor washing system based on an application case for a heavy duty gas turbine power plant. The inlet duct of the engine was modeled and droplet trajectories were calculated. Different spray patterns including single jet and full cone have been investigated for different ranges of injection velocity and droplet size. The spray angle was evaluated experimentally and was used to model the full cone spray pattern. The boundary conditions for the airflow were iterated with a performance simulation tool to match pressure loss and mass flow. To investigate the effect of different operating conditions on the airflow and spray distribution, an installation scenario of the engine at altitude on a hot summer day was modeled. The scenario was based on a review of plant installations and local meteorological conditions. Fluid concentration plots at the compressor inlet plane were evaluated for the different computational cases. Generally with lower injection momentum, the water droplets were significantly deflected by the main airflow. Higher injection velocity and droplet size reduced the effect of the main airflow. Different operating conditions and the significant change of air mass flow affected the spray distribution of the washing system at the compressor inlet. This can be compensated by adjusting the injection angles.


2013 ◽  
Vol 385-386 ◽  
pp. 460-463
Author(s):  
Qiang Gao ◽  
Hong Ye Zhao

Aiming at the problems of flare gas flow monitoring on offshore oil platform, a flare gas flow measurement system is designed. This system is integrated in the whole flare control system and reaches the effective monitoring of flare gas flow. Besides it adopts ultrasonic flow-meters for the more accurate flow-meter data and adopts hot-cap method for the realization of being installed without halting production. Results indicate that the design could offshore oil platform improve the efficiency and safety of production in offshore oil platform.


Author(s):  
Uyioghosa Igie ◽  
Pablo Diez-Gonzalez ◽  
Antoine Giraud ◽  
Orlando Minervino

Gas turbine (GT) operators are often met with the challenge of utilizing and making meaning of the vast measurement data collected from machine sensors during operation. This can easily be about 576 × 106 data points of gas path measurements for one machine in a base load operation in a year, if the width of the data is 20 columns of measured and calculated parameters. This study focuses on the utilization of large data in the context of quantifying the degradation that is mostly related to compressor fouling, in addition to investigations on the impact of offline and online compressor washing. To achieve this, four GT engines operating for about 3.5 years with 51 offline washes and 1184 occasions of online washes were examined. This investigation includes different wash frequencies, liquid concentrations, and one engine operation without online washing (only offline). This study has involved correcting measurement data not only just with compressor inlet temperatures (CITs) and pressures but also with relative humidity (RH). turbomatch, an in-house GT performance simulation software has been implemented to obtain nondimensional factors for the corrections. All of the data visualization and analysis have been conducted using tableau analytics software, which facilitates the investigation of global and local events within an operation. The concept of using of handles and filters is proposed in this study, and it demonstrates the level of insight to the data and forms the basis of the outcomes obtained. This work shows that during operation, the engine performance is mostly deteriorating, though to varying degrees. Online washing also showed an influence on this, reducing the average degradation rate each hour by half, when compared to the engine operating only with offline washing. Hourly marginal improvements were also observed with an increased average wash frequency of nine hours and a similar outcome obtained when the washing solution is 2.3 times more concentrated. Clear benefits of offline washes are also presented, alongside the typically obtainable values of increased power output after a wash, also in relation to the number of operating hours before a wash.


Sign in / Sign up

Export Citation Format

Share Document