scholarly journals Volume of Fluid Based Model of Heavy Fuel Oil Droplet Evaporation and Combustion

Author(s):  
Paolo Guida ◽  
Saumitra Saxena ◽  
William L. Roberts

Abstract Modern CFD simulations of combustion resolve simplified sub-models for droplet evaporation and combustion within a Lagrangian framework. Break-up effects like puffing and micro-explosions are usually neglected but, they eventually influence the evaporation and combustion behaviour of heavy fuel sprays. We are developing a Volume of Fluid (VoF)-based CFD solver that allows us to model single droplet differential evaporation with the break-up effects. Puffing/micro-explosion and droplet ejection proceed in three steps: nucleation of a bubble of a light component within the droplet, expansion/coalescence of the bubbles and finally eruption with sub-droplets formation. Our goal is to individually model each event and then combine them in a composite simulation. Henceforth we can get data in realistic conditions to be used in Lagrangian spray simulations. We identified three relevant features that are necessary to create a reliable representation: interface tracking, differential evaporation, and compressibility effect. The solver is based on the Volume of Fluid (VoF) technique and coded within the open-source OpenFOAM framework. VoF technique consists of transporting the volume fraction of one of the two phases (liquid or gas). The Navier-Stokes equations are solved for a single-phase but adapting the physical properties to the volume fraction value. A state-of-the-art method called iso-Advector was adopted to reconstruct the interface from the volume fraction field. The evaporation was implemented as a source term in the volume fraction equation, and the conservation equations were modified accordingly. In order to calculate the vapour and liquid physical properties, RKS equation of state (EOS) was implemented. The droplet was assumed to have 2 phases: light and heavy, having physical properties comparable to water and heavy fuel oil (HFO), respectively. The pressure closure equation was modified to handle large pressure differences during the internal evaporation of light components. The validation of the solver was performed through benchmark cases as multiphase shock-tube, droplet oscillation and boiling interface either with experimental works and analytical solutions. A single suspended droplet experiment was performed to measure the velocity of an ejected micro-droplet during puffing using a shadowgraphy technique. The code is able to predict ejection velocity within a 15% error, which seems to be promising. The present article documents part of the algorithm development and its validation. In particular, the step describing the ejection of the inner vapours is described.

2021 ◽  
Vol 17 ◽  
Author(s):  
B. Kanimozhi ◽  
M. Muthtamilselvan ◽  
Qasem M. Al-Mdallal ◽  
Bahaaeldin Abdalla

Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for other two boundaries. The effect of magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations. Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters. Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows.Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number. Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3092
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Spillway design is key to the effective and safe operation of dams. Typically, the flow is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades, advances in computational fluid dynamics (CFD) made available several numerical tools to aid hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method. Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant computational resources. An assessment is performed in a spillway offset aerator, comparing the two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy, the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency and stability of this model.


Author(s):  
Arash Karimipour ◽  
Masoud Afrand

Forced convection of water–Cu nanofluid in a two-dimensional microchannel is studied numerically. The microchannel wall is divided into three parts. The entry and exit ones are kept insulated while the middle one has more temperature than the inlet fluid. The whole of microchannel is under the influence of a magnetic field with uniform strength of B0. Slip velocity and temperature jump are involved along the microchannel walls for different values of slip coefficient such as B = 0.001, B = 0.01, and B = 0.1 for Re = 10, Re = 50, and Re = 100. Navier–Stokes equations are discretized and numerically solved by a developed computer code in FORTRAN. Results are presented as the velocity, temperature, and Nusselt number profiles. Moreover, the effect of magnetic field on slip velocity and temperature jump is investigated for the first time in the present work. Larger Hartmann number, Reynolds number, and volume fraction correspond to more heat transfer rate; however, the effects of Ha and ϕ are more significant at higher Re.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


Author(s):  
Mohammad Taeibi-Rahni ◽  
Shervin Sharafatmand

The consistent behavior of non-dimensional parameters on the formation and break up of large cylindrical droplets has been studied by direct numerical simulations (DNS). A one-fluid model with a finite difference method and an advanced front tracking scheme was employed to solve unsteady, incompressible, viscous, immiscible, multi-fluid, two-dimensional Navier-Stokes equations. This time dependent study allows investigation of evolution of the droplets in different cases. For moderate values of Atwood number (AT), increasing Eotvos number (Eo) explicitly increases the deformation rate in both phenomena. Otherwise, raising the Ohnesorge number (Oh) basically amplifies the viscous effects.


2013 ◽  
Vol 655-657 ◽  
pp. 449-456
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical prediction of cavitation erosion on a Francis turbine runner using CFD code. The SST turbulence model is employed in the Reynolds averaged Navier–Stokes equations in this study. A mixture assumption and a finite rate mass transfer model were introduced. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators(PISO) procedure. Comparison the numerical prediction results with a real runner with cavitation damage, the region of higher volume fraction by simulation with the region of runner cavitation damage is consistent.


1995 ◽  
Vol 05 (02) ◽  
pp. 191-211 ◽  
Author(s):  
LIONEL SAINSAULIEU

We consider a cloud of solid particles in a gas flow. The cloud is described by a probability density function which satisfies a kinetic equation. The gas flow is modeled by Navier-Stokes equations. The two phases exchange momentum and energy. We obtain the entropy balance of the gas flow and deduce some bounds for the volume fraction of the gas phase. Writing the entropy balance for the dispersed phase enables one to determine the particles equilibrium velocity distribution function when the gas flow is known.


Author(s):  
T. Me´nard ◽  
A. Berlemont

We are here concerned by the primary break-up of a jet: a lot of topological changes occur and the Level Set Method thus appears well designed for our purpose. To describe the interface discontinuities, we use the Ghost Fluid Method (GFM) and a projection method is used to solve incompressible Navier-Stokes equations that are coupled to a transport equation for the level set function. The main drawback of level set methods is that numerical computations in the re-distancing algorithm can generate mass loss in under-resolved regions. To improve mass conservation extension of the method can be developed, namely a coupling between VOF and Level Set. In order to illustrate the abilities of the Level Set/VOF/Ghost Fluid method for interface tracking, we present a 3D simulation of the primary atomization zone of a turbulent liquid jet. The turbulence initiates some perturbations on the liquid surface, that are enhanced by the mean shear and break-up occurs. The generated liquid parcels show a wide range of shapes. Particular behaviors such ligament detachments, droplet formations and break up are described.


Sign in / Sign up

Export Citation Format

Share Document