Performance and Stability Enhancement of NASA Rotor 37 Applying Abradable Coating

Author(s):  
Behnam H. Beheshti ◽  
Bijan Farhanieh ◽  
Kaveh Ghorbanian ◽  
Joao A. Teixeira ◽  
Paul C. Ivey

Improvements in sealing mechanism between the rotating and the stationary parts of a turbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability. This paper presents a numerical investigation of abradable coating as a means to seal the tip leakage flow in NASA Rotor 37, a transonic axial compressor rotor. In order to validate the multi block model used in the tip gap region, various flow characteristics are verified with the experimental data for smooth casing at a design clearance of 0.5% span. To have a better understanding of how an abradable seal affects the passage flow field, smooth casing and abradable coating are studied and results are compared for various models including two different incursion depth and width. Results indicate that the application of abradable coating in transonic axial compressors can efficiently improve the performance and stability.

Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

A low speed axial compressor with casing treatment of axial slots was numerically investigated. Time-accurate numerical calculations were performed to simulate unsteady flow in the rotor tip region and the effects of casing treatment on the flow. Since the compressor rotor had a large tip clearance, it was found that the tip leakage flow had an inherent unsteady feature that was not associated with rotor rotation. The unsteadiness of the tip leakage flow was induced by changes in the blade loading due to the pressure distribution formed by the tip leakage flow. This characteristic is called rotating instability or self-induced unsteadiness. The frequency of the flow oscillation was found to decrease as the flow rate was reduced. On the other hand, as expected, the operating range was improved by casing treatment, as shown by calculations in good agreement with the experimentally measured data. The unsteadiness of the tip leakage flow was alleviated by the casing treatment. The interaction between the flow in the tip region and the re-circulated flow through the axial slots was observed in detail. The removal and injection of flow through the axial slots were responsible not only for the extension of the operating range but also for the alleviation of the unsteadiness. Analyses of instantaneous flow fields explained the mechanism of the interaction between the casing treatment and the unsteady oscillation of the tip leakage flow. Furthermore, the effects of changes in the amount of re-circulation and the location of the removal and injection flow on the unsteadiness of the tip leakage flow were examined.


Author(s):  
R Taghavi-Zenouz ◽  
S Eslami

Three-dimensional unsteady numerical simulations were carried out to analyse tip clearance flow in a low-speed isolated axial compressor rotor blades row. A flow solver has been used for the current study utilizing the large eddy simulation (LES) technique. Periodic tip leakage flow and its propagation trajectories were simulated in detail. A number of pseudo pressure transducers were imposed on the pressure side of the blade for detection of unsteady surface pressures to provide a calculation of tip leakage flow frequencies. Two different sizes of tip clearance were considered for simulations and analyses. Non-dimensional frequencies of the tip leakage flow were calculated and final results were compared to those of existing numerical and experimental data. Final results demonstrated that in contrast to the Reynolds averaged Navier–Stokes (RANS) model, the LES method shows considerable dependency of frequency characteristics of the tip leakage flow to the gap size and can detect different frequency spectrums along the blade surface. All the results obtained through the current numerical approach were in close agreement with those of existing experimental data.


Author(s):  
Carsten Stockhaus ◽  
Werner Volgmann ◽  
Horst Stoff

The purpose of this paper is to investigate numerically the tip leakage flow for different blade tip geometries in an axial compressor stage under design and off-design conditions. Using flat tips, suction and pressure side squealers in combination with knife tips, a comparison of the rotor performance in terms of pressure and efficiency gain is reported. Detailed flow characteristics within the tip clearance gap, interaction of the leakage flow with the main flow and resultant turning effects at the exit of the row have been investigated. The CFD method is based on a commercially available compressible Navier-Stokes solver (STAR-CD), using a turbulent compressible high Reynolds number k-ε model. Accurate numerical comparison of different blade tip geometries is achieved by using the same grid for the various shapes. The blocking strategy with O-grid structure is presented. The numerical results show clearly the beneficial effect of cutting away material from the pressure side. The higher surface curvature of the suction side squealer affects the pressure blade loading and increases the lift in the same way. This effect is increased by increasing the squealer height and results in a lower efficiency gain near the surge line. The best modification of the blade tip shows a maximum reduction of the tip discharge coefficient of 20 %. This leads to an improved total pressure ratio of 0.29% and an improved total polytropic efficiency of 0.40% under design condition. The influences of favourable squealer geometries on stage characteristics are described along an operating line. With a simulation of IGV-setting from Δα = −15° to Δα = +20° different operating points have been investigated in a swirl performance map. The beneficial effect of the suction side squealer found for the rotor row could assign to the stator row and results in an improved static pressure gain. Furthermore, design indications are presented which help to keep the efficiency gain under surge condition as high as possible.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Moru Song ◽  
Hong Xie ◽  
Bo Yang ◽  
Shuyi Zhang

This paper studies the influence of tip clearance on the flow characteristics related to the performance. Based on full-passage numerical simulation with experimental validation, several clearance models are established and the performance curves are obtained. It is found that there exists an optimum clearance for the stable working range. By analyzing the flow field in tip region, the role of the tip leakage flow is illustrated. In the zero-clearance model, the separation and blockage along the suction side is the main reason for rotating stall. As the tip clearance is increased to the optimum value, the separation is suppressed by the tip leakage flow. However, with the continuing increasing of the tip clearance, the scale and strength of the tip clearance vortex is increased correspondingly. When the tip clearance is larger than the optimum value, the tip clearance vortex gradually dominates the flow field in the tip region, which can increase the unsteadiness in the tip region and trigger forward spillage in stall onset.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Author(s):  
Haohao Wang ◽  
Lei Zhao ◽  
Limin Gao ◽  
Yongzeng Li ◽  
Chi Ma

Abstract This paper deals with the numerical simulation of a passive control technology to increase the performance of the first rotor in a counter-rotating axial compressor. The objective is to extend the stable operating range of an axial compressor rotor using blade tip fillet structure that located on the blade tip pressure side. Firstly, the behavior of the tip leakage flow is investigated for the compressor rotor without passive treatment. The simulations show the loading of blade tip increases as the mass flow rate decreases, which pushed the location of tip leakage vortex and tip separation vortex forward to leading edge. A blockage in the rotor blade passage is also observed at near stall conditions. Then, a rotor blade tip fillet structure (TFS) is tested in order to control leakage flow in the tip region. Steady calculations were conducted to investigate the impact of TFS on the performance of the compressor rotor. The results show that TFS could extend the operating range with no penalty for efficiency when the fillet structure located on the blade tip pressure side. The flow control mechanisms of tip leakage flow are that TFS has a good ability to weaken the tip separation vortex and make the tip leakage vortex closer to the blade suction surface compared to origin rotor blade. It is founded that TFS may lead to a increase of leakage flow mass rate near tip clearance region that resulted in the addition of mixing loss. It is significant to obtain a balance between the benefits of weakening the tip separation vortex and the damage of mixing loss.


2015 ◽  
Vol 741 ◽  
pp. 504-508
Author(s):  
Yong Lei Qu ◽  
Bo Wan ◽  
Xiao Meng Pei

Tip clearance of compressor rotor blade is introduced for avoiding friction collision between the moving blade and the casing. Because of the existence of the pressure difference between pressure surfaces and the suction surfaces of the blade, the blending of the leakage flow with the mainstream causes losses, which affects internal flow field and overall performance of the compressor. In this article, numerical analysis software is used to study the multi-condition performance of a six and a half axial flow compressor, for analyzing the impact of leakage flow patterns on compressor.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Young-Jin Jung ◽  
Tae-Gon Kim ◽  
Minsuk Choi

This paper addresses the effect of the recessed blade tip with and without a porous material on the performance of a transonic axial compressor. A commercial flow solver was employed to analyze the performance and the internal flow of the axial compressor with three different tip configurations: reference tip, recessed tip and recessed tip filled with a porous material. It was confirmed that the recessed blade tip is an effective method to increase the stall margin in an axial compressor. It was also found in the present study that the strong vortex formed in the recess cavity on the tip pushed the tip leakage flow backward and weakened the tip leakage flow itself, consequently increasing the stall margin without any penalty of the efficiency in comparison to the reference tip. The recessed blade tip filled with a porous material was suggested with hope to obtain the larger stall margin and the higher efficiency. However, it was found that a porous material in the recess cavity is unfavorable to the performance in both the stall margin and the efficiency. An attempt has been made to explain the effect of the recess cavity with and without a porous material on the flow in an axial compressor.


Sign in / Sign up

Export Citation Format

Share Document