A Discussion: Issue Improving the Accuracy of Turbine Blade Heat Transfer Simulation

2021 ◽  
Author(s):  
Shenghui Zhang ◽  
Shuiting Ding ◽  
Chuankai Liu ◽  
Gang Zhao ◽  
Jie Wang

Abstract To be able to set uniform inlet boundary conditions in simulation, there must be an inlet extension at the first guide vane. In the inlet extension, turbulence experiences strong numerical dissipation, which has not been paid attention to. In the current paper, the influence of the numerical dissipation of turbulence on accuracy in predicting heat transfer was discussed. Two cases, where the numerical dissipation of turbulence was neglected, were analysed. In the first case, wrong conclusion about effect of turbulence scale on heat transfer was drawn: blade heat transfer increases with inlet turbulence scale under the same inlet turbulence intensity. The mechanism for the wrong conclusion is that turbulence with larger scale numerically dissipates more slowly in the inlet extension so that turbulence intensity at blade leading edge is greater under turbulence with larger scale, it is the turbulence intensity not turbulence scale itself really affects heat transfer. In the second case, when the numerical dissipation of turbulence is neglected and turbulence parameters at measuring plane of inlet are directly as input for turbulence boundary condition, flow transition is postponed downstream and heat transfer error is greater, however, when the numerical dissipation of turbulence is considered and turbulence parameters at measuring plane are regard as benchmark and matched by adjusting parameters of inlet turbulence boundary condition, the result shows better agreement with experiment. Thus, the correct way to set turbulence boundary condition is to match turbulence parameters at measuring plane by adjusting parameters of inlet turbulence boundary.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Zhigang Li ◽  
Luxuan Liu ◽  
Jun Li ◽  
Ridge A. Sibold ◽  
Wing F. Ng ◽  
...  

This paper presents a detailed experimental and numerical study on the effects of upstream step geometry on the endwall secondary flow and heat transfer in a transonic linear turbine vane passage with axisymmetric converging endwalls. The upstream step geometry represents the misalignment between the combustor exit and the nozzle guide vane endwall. The experimental measurements were performed in a blowdown wind tunnel with an exit Mach number of 0.85 and an exit Re of 1.5×106. A high freestream turbulence level of 16% was set at the inlet, which represents the typical turbulence conditions in a gas turbine engine. Two upstream step geometries were tested for the same vane profile: a baseline configuration with a gap located 0.88Cx (43.8 mm) upstream of the vane leading edge (upstream step height = 0 mm) and a misaligned configuration with a backward-facing step located just before the gap at 0.88Cx (43.8 mm) upstream of the vane leading edge (step height = 4.45% span). The endwall temperature history was measured using transient infrared thermography, from which the endwall thermal load distribution, namely, Nusselt number, was derived. This paper also presents a comparison with computational fluid dynamics (CFD) predictions performed by solving the steady-state Reynolds-averaged Navier–Stokes with Reynolds stress model using the commercial CFD solver ansysfluent v.15. The CFD simulations were conducted at a range of different upstream step geometries: three forward-facing (upstream step geometries with step heights from −5.25% to 0% span), and five backward-facing, upstream step geometries (step heights from 0% to 6.56% span). These CFD results were used to highlight the link between heat transfer patterns and the secondary flow structures and explain the effects of upstream step geometry. Experimental and numerical results indicate that the backward-facing upstream step geometry will significantly enlarge the high thermal load region and result in an obvious increase (up to 140%) in the heat transfer coefficient (HTC) level, especially for arched regions around the vane leading edge. However, the forward-facing upstream geometry will modestly shrink the high thermal load region and reduce the HTC (by ∼10% to 40% decrease), especially for the suction side regions near the vane leading edge. The aerodynamic loss appears to have a slight increase (0.3–1.3%) because of the forward-facing upstream step geometry but is slightly reduced (by 0.1–0.3%) by the presence of the backward upstream step geometry.


Author(s):  
R. S. Bunker

A transonic linear vane cascade has been utilized to assess the effects of localized surface disturbances on airfoil external heat transfer coefficient distributions, such as those which may be created by the spallation of thermal barrier coatings. The cascade operates at an overall pressure ratio of 1.86, with an inlet total pressure of about 5 atm. Cascade Reynolds numbers based on axial chord length and exit velocity range from 2.2 to 4.8 · 106. Surface disturbances are modeled with the use of narrow trip strips glued onto the surface at selected locations, such that sharp forward facing steps are presented to the boundary layer. Surface locations investigated include the near leading edge region on either side of the stagnation point, the midchord region of the pressure side, and the high curvature region of the suction side. Heat transfer enhancement factors are obtained for disturbances with engine representative height-to-momentum thickness ratios, as a function of Reynolds number. Enhancement factors are compared for both smooth and rough airfoil surfaces with added disturbances, as well as low and high freestream turbulence intensity. Results show that leading edge heat transfer is dominated by freestream turbulence intensity effects, such that enhancements of nearly 50% at low turbulence levels are reduced to about 10% at elevated turbulence levels. Both pressure and suction side enhancement factors are dominated by surface roughness caused effects, with large enhancements for smooth surfaces being drastically reduced for roughened surfaces.


1992 ◽  
Vol 114 (1) ◽  
pp. 147-154 ◽  
Author(s):  
T. Arts ◽  
M. Lambert de Rouvroit

This contribution deals with an experimental aero-thermal investigation around a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement. The measurements were performed in the von Karman Institute short duration Isentropic Light Piston Compression Tube facility allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aero engines. The experimental program consisted of flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations, blade velocity distribution measurements by means of static pressure tappings, blade convective heat transfer measurements by means of platinum thin films, downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism, and free-stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free-stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and free-stream turbulence intensity.


Author(s):  
Tony Arts ◽  
Muriel Lambert De Rouvroit

This contribution deals with an experimental aero-thermal investigation around a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement. The measurements were performed in the von Karman Institute short duration Isentropic Light Piston Compression Tube facility allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aero engines. The experimental programme consisted of flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations, blade velocity distribution measurements by means of static pressure tappings, blade convective heat transfer measurements by means of platinum thin films, downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism and freestream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the freestream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number and freestream turbulence intensity.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker ◽  
Agnes U. Rungen

This paper presents investigations of the development for a shower-head cooling configuration for a modern industrial turbine guide vane. One aim is to find suitable locations for cooling gas ejection with the lowest cooling gas mass flow possible. The investigations begin with a numerical experiment. After the prediction of a suitable configuration and operating parameters, the aerodynamics are investigated experimentally using a non-intrusive LDA technique. Once the aerodynamics had been validated, the numerical experiments were expanded to a thermal analysis of the vane. Our conjugate flow and heat transfer simulation enables thermal analysis of the vane body without us having to derive any heat transfer data beforehand. The calculations were performed for a temperature ratio of 0.5 between cooling gas and main stream. This temperature ratio is similar to the operating conditions found in current designs. The stagnation line moves under the influence of cooling gas ejection, which significantly influences the cooling gas distribution on the vane surface. The temperature distribution inside the vane is compared to a non-cooled test case. The simulation shows that the temperature peaks at the leading edge are reduced by between 18% and 44%.


Author(s):  
A. Hoffs ◽  
U. Drost ◽  
A. Bölcs

This paper presents heat transfer measurements on a turbine airfoil in a linear cascade at various exit Reynolds and Mach numbers ranging from 3.2e5 to 1.6e6 and 0.2 to 0.8, respectively, which have been conducted with the transient liquid crystal technique. Two series were performed at turbulence intensities of 5.5% and 10%, the latter being created by a squared-bar mesh placed 10 meshsizes upstream of the turbine airfoils. While normally polished liquid crystals were used additional experiments were done at the high turbulence intensity with naturally rough liquid crystals. All measurements indicate a gradual increase in heat transfer and an upstream shift of the laminar-to-turbulent transition with increasing Reynolds number and turbulence intensity. The leading edge heat transfer agrees well with correlations if the turbulence length scale is taken into account. The measurements conducted with rough liquid crystals show an earlier transition on the suction side. Calculations with a two-dimensional boundary layer code agree well with the measurements.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram

A computational study on conjugate heat transfer is carried out to present the behavior of nondimensional temperature and heat transfer coefficient of a Nozzle Guide Vane (NGV) leading edge. Reynolds number of both mainstream flow and coolant impinging jets are varied. The NGV has five rows of film cooling holes arranged in shower head manner and four rows of impingement holes arranged in staggered manner. The results are presented by considering materials of different thermal conductivity. The results show that the mainstream flow affects the temperature distribution on the interior side of the vane leading edge for high conductivity material whereas it has negligible effects for low conductivity material. The effect of changing blowing ratio on internal heat transfer coefficient and internal surface temperature is also presented.


Author(s):  
Franz Puetz ◽  
Johannes Kneer ◽  
Achmed Schulz ◽  
Hans-Joerg Bauer

An increased demand for lower emission of stationary gas turbines as well as civil aircraft engines has led to new, low emission combustor designs with less liner cooling and a flattened temperature profile at the outlet. As a consequence, the heat load on the endwall of the first nozzle guide vane is increased. The secondary flow field dominates the endwall heat transfer, which also contributes to aerodynamic losses. A promising approach to reduce these losses is non-axisymmetric endwall contouring. The effects of non-axisymmetric endwall contouring on heat transfer and film cooling are yet to be investigated. Therefore, a new cascade test rig has been set up in order to investigate endwall heat transfer and film cooling on both a flat and a non-axisymmetric contoured endwall. Aerodynamic measurements that have been made prior to the upcoming heat transfer investigation are shown. Periodicity and detailed vane Mach number distributions ranging from 0 to 50% span together with the static pressure distribution on the endwall give detailed information about the aerodynamic behavior and influence of the endwall contouring. The aerodynamic study is backed by an oil paint study, which reveals qualitative information on the effect of the contouring on the endwall flow field. Results show that the contouring has a pronounced effect on vane and endwall pressure distribution and on the endwall flow field. The local increase and decrease of velocity and the reduced blade loading towards the endwall is the expected behavior of the 3d contouring. So are the results of the oil paint visualization, which show a strong change of flow field in the leading edge region as well as that the contouring delays the horse shoe vortex hitting the suction side.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic

This paper presents an experimental investigation of the concept of using the combustor transition duct wall to shield the nozzle guide vane leading edge. The new vane is tested in a high-speed experimental facility, demonstrating the improved aerodynamic and thermal performance of the shielded vane. The new design is shown to have a lower average total pressure loss than the original vane, and the heat transfer on the vane surface is overall reduced. The peak heat transfer on the vane leading edge–endwall junction is moved further upstream, to a region that can be effectively cooled as shown in previously published numerical studies. Experimental results under engine-representative inlet conditions showed that the better performance of the shielded vane is maintained under a variety of inlet conditions.


Author(s):  
Arun Kumar Pujari ◽  
Bhamidi Prasad ◽  
Nekkanti Sitaram

Experimental and computational heat transfer investigations are reported in the interior side of a nozzle guide vane (NGV) subjected to combined impingement and film cooling. The domain of study is a two dimensional five-vane cascade having four passages. Each vane has a chord length of 228 mm and the pitch distance between the vanes is 200 mm. The vane internal surface is cooled by dry air supplied through the two impingement inserts: the front and the aft. The mass flow through the impingement chamber is varied, for a fixed spacing (H) to jet diameter (d) ratio of 1.2. The surface temperature distributions, at certain locations of the vane interior, are measured by pasting strips of liquid crystal sheets. The vane interior surface temperature distribution is also obtained by computations carried out by using Shear stress transport (SST) k-ω turbulence model in the ANSY FLUENT-14 flow solver. The computational data are in good agreement with the measured values of temperature. The internal heat transfer coefficients are thence determined along the leading edge and the mid span region from the computational data.


Sign in / Sign up

Export Citation Format

Share Document