Numerical and Experimental Analysis for Large Radius Deformation of Stainless Steels by Laser Forming Process

2005 ◽  
Author(s):  
J. Pennuto ◽  
J. Choi

In an effort to develop a process free of dedicated tooling, this research seeks to study large radius deformation by laser forming. Experimental testing was conducted to determine how the laser parameters affect the single pass output bend angle as well as the additive bend angle from successive parallel, evenly spaced laser irradiations. As an extension of the previous developments, this work seeks to develop a three-dimensional model to simulate the multi-scan laser process. It is of interest to determine how sophisticated a three-dimensional case is required for sufficient agreement to experimental data. The simulated results of bending angle are compared with experimental data and suggestions for future study include the implementation of phase transformation and microstructure data within the model to account for stress development resulting from phase transformation and grain growth.

Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


2014 ◽  
Vol 684 ◽  
pp. 252-258 ◽  
Author(s):  
Jun Hong Wang ◽  
Xu Dong Bao ◽  
Hai Mei Feng ◽  
Chang Du

Abstract: The design and manufacture of mold often rely on the experience of the designers, which led to the fact that the mold needs to be repeatedly debugged and corrected. Numerical simulation technology enables the simulation of the forming process of sheet metal and prediction of defects in design, thus to improve labor efficiency, save time and reduce costs. In this paper, the software Dynaform is used as a platform and a three-dimensional model is built to numerical simulate and analyze the drawing deep of a typical thin-walled cylindrical piece.Orthogonal experimentis adopted to analyze the impact of BHF, punching speed and punch-die gap on forming quality of the drawing pieces. With minimum thickness and wrinkling as indicators, the impact of various factors is analyzed and a set of optimum parameters is found out that is, BHF is 20kN, punching speed is 2000mm / s and punch-die gap is 0.9mm.


2011 ◽  
Vol 130-134 ◽  
pp. 1484-1490
Author(s):  
Yan Feng Liu ◽  
Hong Wei Li ◽  
Jing Wei Zhang ◽  
Jin Xue

A three-dimensional model was developed to simulate the laminar flow and convective heat transfer in rectangular silicon microchannels,which have hydraulic diameter of 95.3,92.3 ,85.8 , 80 and 75μm respectively.The rationality of the simulation methods and results were validated by comparing with experimental data. The simulation results indicate that the aspect ratio has a significant impact on the Poiseuille number. Conventional fluid flow theory is fit for researching the fluid flow in microchannels, Po is a constant that is not dependent on the Reynolds number.


2015 ◽  
Vol 713-715 ◽  
pp. 323-326
Author(s):  
Sha Sha Wang ◽  
Zheng Ning Tang ◽  
Bin Ying Miao ◽  
Jia Xiang Chen

EHD micro-jet can deposit rule and functional patterns in a direct, continuous and controllable manner, and has the advantages of good compatibility, high resolution and simple structure, thus becoming a cost-effective and high-efficiency technology. Through numerical method, obtain the three dimensional model of cone-jet and emphasize the correlation of sediment diameter and PEO concentration. The theoretical graphics agree well with the experimental data, which can explain and provide some theoretical basis for the experiments.


2011 ◽  
Vol 189-193 ◽  
pp. 2907-2910
Author(s):  
Lin Liu ◽  
Zhong Yi Cai ◽  
Shao Hui Wang ◽  
Mine Zhe Li

The software for the continuous flexible forming process was developed using Visual C++ platform. It can directly read the triangular mesh data of the CAD model. The three-dimensional model was reconstructed rapidly by using the core function of the OpenGL. Moreover, the mathematical model of adjusting the flexible rolls and the longitudinal curvature were established by this software. Using these mathematical descriptions the simulation of the continuous flexible forming process can be finished from the viewpoint of geometry.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jingze Liu ◽  
Qingguo Fei ◽  
Shaoqing Wu ◽  
Zhenhuan Tang ◽  
Sanfeng Liao ◽  
...  

Compared with the three-dimensional rotor model for a central tie rod rotor, an equivalent one-dimensional model can greatly improve the computational efficiency in rotor dynamics analysis with a certain accuracy. However, little research work can be found on improving the modeling accuracy of one-dimensional models using experimental data. In this paper, a one-dimensional discrete mass model considering pretightening force is proposed for central tie rod rotors to achieve the purpose of both efficient and accurate modeling. Experimental testing and three-dimensional model analysis are used as reference and verification approaches. A sensitivity-based method is adopted to update the proposed one-dimensional model via minimizing the error in the critical speed comparing with the corresponding three-dimensional finite element model which has been verified by a modal test. Prediction of damped unbalanced response is conducted to show the practicality of the updated one-dimensional model. Results show that the method presented in this research work can be used to simulate a complex preloaded rotor system with high efficiency and accuracy.


Sign in / Sign up

Export Citation Format

Share Document