Moving Heat Sources in a Half Space: Effect of Source Geometry
The time dependent temperature distribution due to a moving plane heat source of hyperelliptical geometry is analytically studied in this work. The effect of the heat source shape is investigated starting from the general solution of a moving heat source on a half space. Selecting the square root of the heat source area as a length scale, it is observed that the temperature distribution becomes a weak function of the heat source shape. Variation of temperature field with respect to the source aspect ratio, velocity and depth is studied. The analysis presented in this work is valid for both transient and steady-state conditions. In addition, the hyperellipse formulation provided here covers a wide range of shapes including star, rhombic, ellipse, circle, square, rectangle and rectangle with rounded corners.