Characterization Phase Change Materials (PCM) Using T-History Method

Author(s):  
Navin Kumar ◽  
Debjyoti Banerjee

“T-history method” is widely used for characterization of thermal properties of Phase Change Material (PCM). In this study improvements are proposed to the experimental protocol used in the conventional T-History method. Experimental validation of numerical predictions for various samples of PCM were performed using the proposed measurement technique. This enabled the evaluation of the improvements in the proposed approach as well as for analyzing the experimental results. This involved measurement of temperature at the surface and in the center of the PCM samples (as well as that of the reference sample materials). The proposed modifications enable enhanced accuracy for estimation of the material properties (when compared to the conventional approaches). The estimates from the proposed approach were observed to be within 10% of the measured values obtained using Differential Scanning Calorimetry (DSC). The proposed approach is amenable to testing large sample sizes, is simpler to implement, provides more rapid data collection and is more cost-effective than that obtained using standard DSC protocols.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


2015 ◽  
Vol 749 ◽  
pp. 415-419
Author(s):  
Zbyšek Pavlík ◽  
Anton Trník ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Robert Černý

A Phase Change Material (PCM) based on paraffinic wax encapsulated in polymer shell is used for improvement of the heat storage capacity of commercially produced dry plaster, originally developed for both exterior and interior hand application. The composition of PCM modified plasters is designed with respect to the workability of fresh mixtures. Characterization of applied PCM is done using the measurement of particle size distribution, powder density, and matrix density. For the newly developed composite plasters, basic physical properties, mechanical properties, and thermal properties are accessed, whereas a specific attention is paid to the Difference Scanning Calorimetry (DSC) analysis. Using DSC measurement, temperatures of phase change transitions and phase changes enthalpies are identified. The obtained results show that the temperature induced phase change can be used for the release and storage of thermal energy in buildings, which can be beneficially utilized for saving the energy spent for the achievement of the indoor thermal comfort.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 107
Author(s):  
Evelyn Reyes-Cueva ◽  
Juan Francisco Nicolalde ◽  
Javier Martínez-Gómez

Environmental problems have been associated with energy consumption and waste management. A solution is the development of renewable materials such as organic phase change materials. Characterization of new materials allows knowing their applications and simulations provide an idea of how they can developed. Consequently, this research is focused on the thermal and chemical characterization of five different avocado seed oils depending on the maturity stage of the seed: 100% unripe, 25% mature-75% unripe, 50% mature-50% unripe, 75% mature-25% unripe, and 100% mature. The characterization was performed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The best oil for natural environments corresponded to 100% matured seed with an enthalpy of fusion of 52.93 J·g−1, and a degradation temperature between 241–545 °C. In addition, the FTIR analysis shows that unripe seed oil seems to contain more lipids than a mature one. Furthermore, a simulation with an isothermal box was conducted with the characterized oil with an initial temperature of −14 °C for the isothermal box, −27 °C for the PCM box, and an ambient temperature of 25 °C. The results show that without the PCM the temperature can reach −8 °C and with it is −12 °C after 7 h, proving its application as a cold thermal energy system.


2021 ◽  
pp. 152808372110417
Author(s):  
Zhou Zhao ◽  
Ningning Tong ◽  
Hong Song ◽  
Yan Guo ◽  
Jinmei Wang

In this work, a phase-change energy storage nonwoven fabric was made of polyurethane phase-change material (PUPCM) by a non-woven melt-blown machine. Polyethylene glycol 2000 was used as the phase transition unit and diphenyl-methane-diisocyanate as the hard segment to prepare PUPCM. Thermal stability of the PUPCM was evaluated through thermal stability analysis. The performance of pristine PUPCM was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry to analyze the spinning technology of spinning temperature and the stretching process. Phase-change energy storage nonwoven fabric (413.22 g/m2) was prepared, and the morphology, solid–solid exothermic phase transition, mechanical properties, and the structures were characterized. The enthalpy of solid–solid exothermic phase transition reached 60.17 mJ/mg (peaked at 23.14°C). The enthalpy of solid–solid endothermic phase transition reached 67.09 mJ/mg (peaked at 34.34°C). The strength and elongation of phase-change energy storage nonwoven fabric were found suitable for garments and tent fabrics.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4687
Author(s):  
Arnold Martínez ◽  
Mauricio Carmona ◽  
Cristóbal Cortés ◽  
Inmaculada Arauzo

The growing interest in developing applications for the storage of thermal energy (TES) is highly linked to the knowledge of the properties of the materials that will be used for that purpose. Likewise, the validity of representing processes through numerical simulations will depend on the accuracy of the thermal properties of the materials. The most relevant properties in the characterization of phase change materials (PCM) are the phase change enthalpy, thermal conductivity, heat capacity and density. Differential scanning calorimetry (DSC) is the most widely used technique for determining thermophysical properties. However, several unconventional methods have been proposed in the literature, mainly due to overcome the limitations of DSC, namely, the small sample required which is unsuitable for studying inhomogeneous materials. This paper presents the characterization of two commercial paraffins commonly used in TES applications, using methods such as T-history and T-melting, which were selected due to their simplicity, high reproducibility, and low cost of implementation. In order to evaluate the reliability of the methods, values calculated with the proposed alternative methods are compared with the results obtained by DSC measurements and with the manufacturer’s technical datasheet. Results obtained show that these non-conventional techniques can be used for the accurate estimation of selected thermal properties. A detailed discussion of the advantage and disadvantage of each method is given.


2013 ◽  
Vol 750-752 ◽  
pp. 1150-1154
Author(s):  
Qi Song Shi ◽  
Lin Cao ◽  
Lei Wang ◽  
Xiao Feng ◽  
Xin Yi Jin ◽  
...  

In this study, a novel phase change material was prepared by coordinating rare earth Tb3+ions to the carboxylate groups of a poly (ethylene glycol).The properties of the material were characterized by differential scanning calorimetry (DSC), infrared spectroscopy (IR) and fluorescence spectroscopy. The synthesis and characterization a novel phase change luminescent Tb-PEG/SA material were described in this paper. The result show that this modified PEG material show both good phase change properties and excellent luminescent properties.


2011 ◽  
Vol 239-242 ◽  
pp. 1101-1104
Author(s):  
Jing Guo ◽  
Heng Xue Xiang ◽  
Cheng Nv Hu

Using stearic acid-lauric acid binary of fatty acid as phase change material, waste polyacrylonitrile fiber (PAN) as supporting material, organic montmorillonite (OMMT) as modifier, and N, N-dimethylformamide as solvent, OMMT-PAN-binary fatty acid composite phase change materials(PCM) is prepared by solution blending. Using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TG) study the structure and properties of PCM, the optimized preparation techniques of PCM obtained by orthogonal tests. SEM results showed that the PCM was homogeneous structure, binary of fatty acid dispersed in the continuous phase PAN; TGA results indicated that the degradation of the phase change material can be divided into three steps; DSC results showed that the crystallization enthalpy of PCM reached 143.27 J/g, the phase change temperature was around 23°C, and the DSC thermal circulation showed good thermal stability of the PCM; cooling curve showed that the PCM had good heat insulation properties, holding time reached 800s, and after repeated thermal circulation, heat insulation properties remained the same.


2021 ◽  
Vol 20 (3) ◽  
pp. 135-144
Author(s):  
Tomasz Bien

The paper describes the research on the method of production of granulated phase-change materials (PCM) used in construction industry for the accumulation of thermal energy. As mineral materials for the granules preparation zeolite from fly ash Na-P1 and natural diatomite dust were used which were impregnated with paraffinic filtration waste and granulated using a combined granulation method. Obtained granules were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, and differential scanning calorimetry (DSC). Mechanical strength of the materials was determined in a “drop strength” test. Performed analyses revealed that mineral composition and micromorphology of the diatomite and zeolite granules were varied, with zeolite granules having higher mechanical strength.


RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15625-15631 ◽  
Author(s):  
Yan Chen ◽  
Xiongjie Zhang ◽  
Beifu Wang ◽  
Mengjiao Lv ◽  
Yingying Zhu ◽  
...  

A novel shape-stabilized phase change material, prepared by immobilizing stearic acid onto tannic-acid-templated mesoporous silica nanoparticles.


2015 ◽  
Vol 1089 ◽  
pp. 137-141 ◽  
Author(s):  
Xiao Qiu Song ◽  
Long Di Cao ◽  
Dan Dan Xu

In this study, it was aimed at preparing and characterizating of poly (methyl methacrylate) (PMMA) shell microcapsules containing tetradecanol as phase change materials (PCMs) for thermal energy storage. The tetradecanol microcapsules were characterized by using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The test result show that the contents of tetradecanol in microcapsules nearly 57.5% and the latent heats of melting and freezing were found to be 120.7 and 118.4 J/g. TGA analyses also indicated that the microPCMs degraded in two steps and have good thermal stability.


Sign in / Sign up

Export Citation Format

Share Document