The Effects of Occupancy and Solar Energy on Homes in the Pacific Northwest Constructed According to Improved Thermal Standards

Author(s):  
D. R. Heerwagen ◽  
K. Nicoliasen ◽  
A. F. Emery

Abstract The space heating energy needed during the winter heating season in Seattle Washington, USA, was monitored over a 15 year period, 1987–2002. Single family residence houses were constructed to building code standards in force at the time of construction and two more to standards calling for envelopes with improved thermal resistance. Although space conditioning energy needs are strongly affected by occupant behavior, simulations generally ignore the temporal occupant behavior in estimating the energy needed for heating and cooling. Vigorous conservation tactics, which produce a thermal response that is highly transient, can lead to substantially different energy needs. No correlation could be established from the measured space heating when aggressive conservation made use of thermostat setback at every opportunity. In this paper we investigate the effects of occupant behavior and the effect of temporal solar heating of walls in the Seattle area for improved thermal construction.

Author(s):  
A. F. Emery ◽  
C. J. Kippenhan

Space conditioning energy needs are strongly affected by occupant behavior. Generally, simulations ignore the behavior of the occupants in estimating the energy needed for heating and cooling. During winter heating, it is reasonable to assume that the electricity associated with appliances contributes to the space heating needs. This paper describes the monitoring of energy used for space heating over a 15 year period. The data suggest that estimates of energy savings can be based upon envelope thermal resistance for moderate occupant behavior. For these occupants space heating is well characterized by the daily average difference between house average space temperature and outside air temperature. Characterizing in terms of indoor temperature, outdoor air temperature, wind speed, and insolation gives a slightly better representation but requires more information than is usually available. However, vigorous conservation tactics can lead to substantially different energy needs and no correlation could be established when aggressive conservation made use of thermostat setback at every opportunity.


Author(s):  
Giovanni Nurzia ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The deployment of solar driven air conditioning is a feasible target in all countries where high solar irradiation matches high cooling loads in buildings: the goal is to gradually replace compression chillers and reduce peak electricity demand during summer. Moreover, as solar thermal collectors are installed, solar cooling systems can be profitably employed during winter. In the present work a code has been implemented for the simulation and the design optimization of combined solar heating and cooling systems. The following system layout has been considered: in warm months the cooling demand is satisfied by means of an absorption chiller — driven by a solar collector field — and a reversible heat pump operating in series. A hot storage matches the variability of solar radiation, while a cold storage smoothes the non-stationarity of cooling demand. During winter, the reversible compression heat pump operates for space heating. Solar collectors are used as thermal source at the evaporator of the heat pump, increasing its coefficient of performance. The code, based on TRNSYS platform, is able to simulate the system throughout a year. Besides TRNSYS standard components a detailed model of the absorption chiller has been included, in order to accurately simulate its off-design operation. Using an optimization tool the size of each component is identified for a given space heating and cooling demand. The minimization of life cycle costs of the system has been chosen as the objective of the optimization. Results of a case study are presented and discussed for a solar heating and cooling plant in an office building. The optimization procedure has been carried out with simulations for a typical Northern Italy town (Alpine climate) and a typical Southern Italy town (Mediterranean climate).


Seasonal and annual performance data are available on only a limited number of the several thousand solar space heating systems now in operation. The emerging information indicates that most of the heat required in buildings can be supplied by solar energy delivered from flat-plate collectors and stored overnight in tanks of water and bins of rock pebbles. Numerous mechanical and operational problems, mainly in liquid collection and storage systems, demand attention. Annual costs of solar heating equipment and its installation usually exceed current values of energy savings, but fuel prices are expected to escalate at rates which often favour solar purchase today. Detailed performance data on several types of solar heating and cooling systems in buildings of identical design are presented, compared and interpreted. Maintenance and repair requirements are noted and contrasted, and forecasts of use in various applications are presented.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1537 ◽  
Author(s):  
Ringel ◽  
Laidi ◽  
Djenouri

From both global and local perspectives, there are strong reasons to promote energy efficiency. These reasons have prompted leaders in the European Union (EU) and countries of the Middle East and North Africa (MENA) to adopt policies to move their citizenry toward more efficient energy consumption. Energy efficiency policy is typically framed at the national, or transnational level. Policy makers then aim to incentivize microeconomic actors to align their decisions with macroeconomic policy. We suggest another path towards greater energy efficiency: Highlighting individual benefits at microeconomic level. By simulating lighting, heating and cooling operations in a model single-family home equipped with modest automation, we show that individual actors can be led to pursue energy efficiency out of enlightened self-interest. We apply simple-to-use, easily, scalable impact indicators that can be made available to homeowners and serve as intrinsic economic, environmental and social motivators for pursuing energy efficiency. The indicators reveal tangible homeowner benefits realizable under both the market-based pricing structure for energy in Germany and the state-subsidized pricing structure in Algeria. Benefits accrue under both the continental climate regime of Germany and the Mediterranean regime of Algeria, notably in the case that cooling energy needs are considered. Our findings show that smart home technology provides an attractive path for advancing energy efficiency goals. The indicators we assemble can help policy makers both to promote tangible benefits of energy efficiency to individual homeowners, and to identify those investments of public funds that best support individual pursuit of national and transnational energy goals.


Sign in / Sign up

Export Citation Format

Share Document