Diesel Spray Rate-of-Momentum Measurement Uncertainties and Diagnostic Considerations

Author(s):  
Benjamin W. Knox ◽  
Michael J. Franze ◽  
Caroline L. Genzale

Interpretation of combustion and emissions outcomes in diesel engines is often enhanced by accurate knowledge of the transient fuel delivery rate and flow characteristics of the injector nozzle. Important physical characteristics of these flows, including velocity profile and flow separation or cavitation effects, are difficult to measure directly, but can be characterized from a flow-averaged perspective through the measurement of nozzle flow coefficients, namely the discharge, velocity, and area contraction coefficients. Both the transient fuel mass flow rate and the flow-averaged nozzle coefficients can be found by measuring the mass and momentum flux of the fuel stream leaving the nozzle during injection through the application of an impingement technique, where fuel is sprayed onto the face of a transducer calibrated for force measurement in close proximity to the nozzle. While several published experiments have employed the spray impingement method to quantify rate-of-injection, the experimental setup and equipment selections vary widely and may contribute to disagreements in measured rate-of-injection. This paper identifies and provides estimates of measurement uncertainties that can arise when employing different experimental setups using the impingement method. It was observed that the impingement technique was sensitive to the design of the strike cap, specifically the contact area between the cap and transducer diaphragm, in addition to fuel temperature. Conversely, we observed that the impingement technique was relatively insensitive to angular and vertical misalignment, where the uncertainty can be estimated using control volume analysis. Transducer selection, specifically those with low acceleration sensitivity, high resonant frequency, and integrated electronics piezoelectric circuitry substantially reduce the noise in the measurement.

Author(s):  
Benjamin W. Knox ◽  
Michael J. Franze ◽  
Caroline L. Genzale

Interpretation of combustion and emissions outcomes in diesel engines is often enhanced by accurate knowledge of the transient fuel delivery rate and flow characteristics of the injector nozzle. Important physical characteristics of these flows, including velocity profile and flow separation or cavitation effects, are difficult to measure directly, but can be characterized from a flow-averaged perspective through the measurement of nozzle flow coefficients, namely, the discharge, velocity, and area-contraction coefficients. Both the transient fuel mass flow rate and the flow-averaged nozzle coefficients can be found by measuring the mass and momentum flux of the fuel stream leaving the nozzle during injection through the application of an impingement technique, where fuel is sprayed onto the face of a transducer calibrated for force measurement in close proximity to the nozzle. While several published experiments have employed the spray impingement method to quantify rate of injection, the experimental setup and equipment selections vary widely and may contribute to disagreements in measured rate of injection. This paper identifies and provides estimates of measurement uncertainties that can arise when employing different experimental setups using the impingement method. It was observed that the impingement technique was sensitive to the design of the strike cap, specifically the contact area between the cap and transducer diaphragm, in addition to fuel temperature. Conversely, we observed that the impingement technique was relatively insensitive to angular and vertical misalignment, where the uncertainty can be estimated using control volume analysis. Transducer selection, specifically those with low acceleration sensitivity, high resonant frequency, and integrated electronics piezoelectric circuitry, substantially reduces the noise in the measurement.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Xinhai Li ◽  
Yong Cheng ◽  
Xiaoyan Ma ◽  
Xue Yang

The inner-flow of gasoline direct injection (GDI) injector nozzles plays an important role in the process of spray, and affects the mixture process in gasoline engine cylinder. The nozzle structure also affects the inner-flow of GDI injector. In order to obtain uniform performance of GDI injector, the size consistency of injector nozzle should be ensured. This paper researches the effect of nozzle length and diameter on the inner flow and analyzes the sensitivity of inner flow characteristics to these structural parameters. First, this paper reveals the process of inception, development, and saturated condition of cavitation phenomenon in injector nozzle. Second, the inner-nozzle flow characteristics are more sensitive to small diameter than large diameter under the short nozzle length, while the sensitivity of the inner-nozzle flow characteristics to large nozzle diameter becomes strong as the increase of the nozzle length. Finally, the influence of nozzle angle on the injection mass flow is studied, and the single nozzle fuel mass will increase as the decrease of nozzle angle α. And the sensitivity of inner-flow characteristic to nozzle angle becomes strong as the decrease of α.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5030
Author(s):  
Junpeng Fu ◽  
Jiuju Cai

To comprehensively understand the effectiveness of external factors on flow characteristics and realize particle flow distribution evenly in bulk layers is an essential prerequisite for improving the performance of heat transfer in vertical sinter cooling beds (VSCBs). The numerical discrete element method (DEM) was applied to investigate external geometric and operational factors, such as the aspect ratio, geometry factor, half hopper angle, normalized outlet scale, and discharge velocity. Using the Taguchi method, a statistical analysis of the effect of design factors on response was performed. In this study, we focused more on external factors than granular properties, be remodelling the external factors was more useful and reliable for actual production in industries. The results showed that the most important factor was the aspect ratio, followed by the geometry factor, normalized outlet scale, half hopper angle, and discharge velocity for the dimensionless height of mass flow. In terms of the Froude number, the most influential factor was the normalized outlet scale with a contribution ratio of 33.81%, followed by the aspect ratio (22.86%), geometry factor (17.73%), discharge velocity (17.73%), and half hopper angle (11.83%).


2015 ◽  
Vol 773-774 ◽  
pp. 450-454
Author(s):  
Ronny Yii Shi Chin ◽  
Shahrin Hisham Amirnordin ◽  
Amir Khalid

The burner system is a patented, unique, higher-efficiency and fuel-injector system that works with a specially designed oil burner to create ultra-efficient combustion that reduces oil use, greenhouse gases and other harmful emissions. This research shows the injector nozzle geometries play a significant role in spray characteristics, atomization and formation of fuel-air mixture in order to improve combustion performance, and decrease some pollutant products from burner system. The aim of this research is to determine the effects of nozzle hole shape on spray characteristics of the premix injector by using CFD. Multiphase of volume of fluid (VOF) cavitating flow inside nozzles are determined by means of steady simulations and Eulerian-Eulerian two-fluid approach is used for performing mixing of Jatropha oil and air. Nozzle flow simulations resulted that cavitation area is strongly dependent on the nozzle hole shape. Conical hole with k-factor of 2 provides higher flow velocity and turbulent kinetic energy compared with conical hole with k-factor of 1.3 and cylindrical hole. The results show that the premix injector nozzle hole shape gives impact to the spray characteristics and indirectly affects the emission of the system.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


ACTA IMEKO ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 59
Author(s):  
Dirk Röske ◽  
Jussi Ala-Hiiro ◽  
Andy Knott ◽  
Nieves Medina ◽  
Petr Kaspar ◽  
...  

Within the framework of the European Metrology Research Programme (EMRP), tools for the calculation of measurement uncertainties have been developed. The Joint Research Project (JRP) 63 of the "SI Broader Scope II" (SIB) call of the EMRP is entitled: "Force traceability within the meganewton range". The project was started in July 2013 and had a duration of 36 months. The aim of the SIB63 project was to improve the traceability of the force measurement especially in the meganewton range. This paper presents the results of work package 4 “Improved dissemination of the SI unit of force”. The tools developed by the partners are available from the website of the project.


2017 ◽  
Vol 62 (6) ◽  
pp. 635-642 ◽  
Author(s):  
Chuong Ngo ◽  
Karl Krüger ◽  
Thomas Vollmer ◽  
Stefan Winter ◽  
Bernhard Penzlin ◽  
...  

AbstractThe forced oscillation technique (FOT) is a non-invasive pulmonary function test which is based on the measurement of respiratory impedance. Recently, promising results were obtained by the application of FOT on patients with respiratory failure and obstructive sleep apnea (OSA). By using a nasal mask instead of a mouthpiece, the influences of the nasal passage and upper shunt alter the measured mechanical impedance. In this paper, we investigated the effects of the nasal passage and mask on FOT measurements from eight healthy subjects. A method for flow correction has been developed, which contains a pressure-flow characteristics compensation of the undetermined flow leakage at the face-mask interface. Impedance calculation and parameter estimation were performed in the frequency domain using fast Fourier transform (FFT). Average nasal parameters were


2011 ◽  
Vol 284-286 ◽  
pp. 1489-1492
Author(s):  
Moussa Magara Traore ◽  
Li Wang

This study presents a numerical simulation, using the flow simulation of solidworks 2010; the results showed the flow speed trajectory, the variation of the shear stress and the flow pressure on different faces of the micro-asperities in relation with the face length. The simulation was done in steady state and with the no- slips condition in contact with the upper surface. The flow characteristics were found also with different flow speed. The turbulence area due to the micro-asperity geometry is localized. The flow characteristics (variation of shear stress and flow pressure) are analyzed for the prediction of the maximum wear area due to the skin friction or drag.


Sign in / Sign up

Export Citation Format

Share Document