Using Multi-Dimensional Combustion Simulations of a Natural Gas/Diesel Dual Fuel Engine to Investigate NOx Trends With Air-Fuel Ratio

Author(s):  
Andrew Hockett ◽  
Michael Flory ◽  
Joel Hiltner ◽  
Scott Fiveland

Natural gas/diesel dual fuel engines used in oil and gas drilling operations must be able to meet NOx emissions limits across a wide range of substitution percentage, which affects the air to natural gas ratio or gas lambda. In a dual fuel engine operating at high substitution, premixed, propagating natural gas flames occur and the NOx formed in such premixed flames is known to be a strong function of gas lambda. Consequently there is interest in understanding how NOx formation in a dual fuel engine is affected by gas lambda. However, NOx formation in a dual fuel engine is complicated by the interaction with the non-premixed diesel jet flame. As a result, previous studies have shown that enriching the air-fuel ratio can either increase or decrease NOx emissions depending on the operating conditions investigated. This study presents multi-dimensional combustion simulations of an air-fuel ratio sweep from gas lambda 2.0 to 1.5 at 80% substitution, which exhibited a minimum in NOx emissions at a natural gas lambda of 1.75. Images from the simulations are used to provide detailed explanations of the physical processes responsible for the minimum NOx trend with natural gas lambda.

Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 1202-1213 ◽  
Author(s):  
Banglin Deng ◽  
Qing Li ◽  
Yangyang Chen ◽  
Meng Li ◽  
Aodong Liu ◽  
...  

Author(s):  
Taylor F. Linker ◽  
Mark Patterson ◽  
Greg Beshouri ◽  
Abdullah U. Bajwa ◽  
Timothy J. Jacobs

Abstract The increased production of natural gas harvested from unconventional sources, such as shale, has led to fluctuations in the species composition of natural gas moving through pipelines. These variations alter the chemical properties of the bulk gas mixture and, consequently, affect the operation of pipeline compressor engines which use the gas as fuel. Among several possible ramifications of these variations is that of unacceptably high engine-out NOx emissions. Therefore, engine controller enhancements which can account for fuel variability are necessary for maintaining emissions compliance. Having the means to predict NOx emissions from a field engine can inform the development of such control schemes. There are several types of compressor engines; however, this study considers a large bore, lean-burn, two-stroke, integral compressor engine. This class of engine has unique operating conditions which make the formation of engine-out NOx different from typical automotive spark-ignited engines. For this reason, automotive-based methods for predicting NOx emissions are not sufficiently accurate. In this study, an investigation is performed on the possible NO and NO2 formation pathways which could be contributing to exhaust emissions. Additionally, a modeling method is proposed to predict engine-out NOx emissions using a 0-D/1-D model of a Cooper-Bessemer GMWH-10C compressor engine. Predictions are achieved with GRI-Mech3.0, a natural gas combustion mechanism, which allows for simulated formation of NOx species. The implemented technique is tuned using experimental data from a field engine to better predict emissions over a range of engine operating conditions. Tuning the model led to acceptable agreement across operating points varying in both load and trapped equivalence ratio.


2021 ◽  
Author(s):  
Simeon Dybe ◽  
Felix Güthe ◽  
Michael Bartlett ◽  
Panagiotis Stathopoulos ◽  
Christian Oliver Paschereit

Abstract Modified humid power cycles provide the necessary boundary condition for combustion to operate on a wide fuel spectrum in a steam-rich atmosphere comprising hydrogen and syngas from gasification besides natural gas as fuels. Thus, these cycles with their high efficiency and flexibility fit in a carbon-free energy market dominated by renewable electricity generation, providing dispatchable heat and electric power. To realize their full potential, the combustor utilized in such power cycles must fulfill the emission limits as well as demands of stable combustion over a wide range of fuel and steam ratios. The operation is limited by the risk of lean blowout for highly diluted syngas with low reactivity, and flashback for highly reactive hydrogen. Further, the gasification product gas can contain unwanted pollutants such as tars and nitrogen containing species like ammonia (NH3). Tars carry a considerable portion of the feedstock’s energy but are associated with detrimental operational behavior. The presence of ammonia in the combustion increases the risk of high NOx-emission at already small ammonia concentrations in the fuel. In this work, humid hydrogen flames are analyzed for their stability and emissions. Stable hydrogen flames were produced over a wide equivalence ratio and steam ratio range at negligible NOx-emissions. Further, natural gas, and a fuel blend substituting bio-syngas, was doped with ammonia. The combustion is analyzed with a focus on emissions and flame position and stability. The addition of ammonia causes high NOx-formation from fuel bound nitrogen (FBN), which highly increases NOx-emissions. The latter decrease with increasing NH3 content and increasing equivalence ratio.


Author(s):  
Sebastian Göke ◽  
Sebastian Schimek ◽  
Steffen Terhaar ◽  
Thoralf Reichel ◽  
Katharina Göckeler ◽  
...  

In the current study, the influence of pressure and steam on the emission formation in a premixed natural gas flame is investigated at pressures between 1.5 bar and 9 bar. A premixed, swirl-stabilized combustor is developed that provides a stable flame up to very high steam contents. Combustion tests are conducted at different pressure levels for equivalence ratios from lean blowout to near-stoichiometric conditions and steam-to-air mass ratios from 0% to 25%. A reactor network is developed to model the combustion process. The simulation results match the measured NOx and CO concentrations very well for all operating conditions. The reactor network is used for a detailed investigation of the influence of steam and pressure on the NOx formation pathways. In the experiments, adding 20% steam reduces NOx and CO emissions to below 10 ppm at all tested pressures up to near-stoichiometric conditions. Pressure scaling laws are derived: CO changes with a pressure exponent of approximately −0.5 that is not noticeably affected by the steam. For the NOx emissions, the exponent increases with equivalence ratio from 0.1 to 0.65 at dry conditions. At a steam-to-air mass ratio of 20%, the NOx pressure exponent is reduced to −0.1 to +0.25. The numerical analysis reveals that steam has a strong effect on the combustion chemistry. The reduction in NOx emissions is mainly caused by lower concentrations of atomic oxygen at steam-diluted conditions, constraining the thermal pathway.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Luke Hagen ◽  
Baine Breaux ◽  
Michael Flory ◽  
Joel Hiltner ◽  
Scott Fiveland

The North American oil and gas industry has experienced a market pull for dual fuel (DF) engines that can run on any ratio of fuels ranging from 100% diesel to a high proportion of field gas relative to diesel, while also meeting the U.S. Tier 4 Nonroad emissions standards. A DF engine must meet complex and at times competing requirements in terms of performance, fuel tolerance, and emissions. The challenges faced in designing a DF engine to meet all of the performance and emissions requirements require a detailed understanding of the trade-offs for each pollutant. This paper will focus on the details of NOx formation for high substitution DF engines. Experimental results have demonstrated that NOx emission trends (as a function of lambda) for DF engines differ from both traditional diesel engines and lean burn natural gas (NG) engines. For high energy substitution (>70%) conditions, NOx emissions are a function of the premixed gas lambda (λng) and contain a local minimum, with NOx increasing as lambda is either leaned or richened beyond the local minimum which occurs from approximately λng = 1.7 – 1.85. It is hypothesized that at richer conditions (λng < 1.7), NOx formed in the burning of gaseous fuel results in increased total NOx emissions. At leaner conditions (λng > 1.85), the NOx formed in the diesel post flame regions, as a result of increased oxygen availability, results in increased total NOx emissions. Between these two regions there are competing effects which result in relatively constant NOx.


Author(s):  
Sebastian Göke ◽  
Sebastian Schimek ◽  
Steffen Terhaar ◽  
Thoralf Reichel ◽  
Katharina Göckeler ◽  
...  

In the current study, the influence of pressure and steam on the emission formation in a premixed natural gas flame is investigated at pressures between 1.5 bar and 9 bar. A premixed, swirl-stabilized combustor is developed that provides a stable flame up to very high steam contents. Combustion tests are conducted at different pressure levels for equivalence ratios from lean blowout to near-stoichiometric conditions and steam-to-air mass ratios from 0% to 25%. A reactor network is developed to model the combustion process. The simulation results match the measured NOx and CO concentrations very well for all operating conditions. The reactor network is used for a detailed investigation of the influence of steam and pressure on the NOx formation pathways. In the experiments, adding 20% steam reduces NOx and CO emissions to below 10 ppm at all tested pressures up to near-stoichiometric conditions. Pressure scaling laws are derived: CO changes with a pressure exponent of approximately −0.5 that is not noticeably affected by the steam. For the NOx emissions, the exponent increases with equivalence ratio from 0.1 to 0.65 at dry conditions. At a steam-to-air mass ratio of 20%, the NOx pressure exponent is reduced to −0.1 to +0.25. The numerical analysis reveals that steam has a strong effect on the combustion chemistry. The reduction in NOx emissions is mainly caused by lower concentrations of atomic oxygen at steam-diluted conditions, constraining the thermal pathway.


Author(s):  
Luke Hagen ◽  
Baine Breaux ◽  
Michael Flory ◽  
Joel Hiltner ◽  
Scott Fiveland

The North American oil and gas industry has experienced a market pull for dual fuel (DF) engines that can run on any ratio of fuels ranging from 100% diesel to a high proportion of field gas relative to diesel, while also meeting the US Tier 4 Nonroad emissions standards. A DF engine must meet complex and at times competing requirements in terms of performance, fuel tolerance, and emissions. The challenges faced in designing a DF engine to meet all of the performance and emissions requirements require a detailed understanding of the trade-offs for each pollutant. This paper will focus on the details of NOx formation for high substitution DF engines. Experimental results have demonstrated that NOx emission trends (as a function of lambda) for DF engines differ from both traditional diesel engines and lean burn natural gas engines. For high energy substitution (>70%) conditions, NOx emissions are a function of the premixed gas lambda (λng) and contain a local minimum, with NOx increasing as lambda is either leaned or rich-ened beyond the local minimum which occurs from approximately λng = 1.7–1.85. It is hypothesized that at richer conditions (λng < 1.7), NOx formed in the burning of gaseous fuel results in increased total NOx emissions. At leaner conditions (λng > 1.85) the NOx formed in the diesel post flame regions, as a result of increased oxygen availability, results in increased total NOx emissions. Between these two regions there are competing effects which result in relatively constant NOx.


Author(s):  
Shigeru Hayashi ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira

The development of a variable geometry lean-premixed combustor is in progress at NAL. Engine testing has been cooducted by using a natural gas-fueled 210-kW gas turbine to demonstrate the capability of ultra-low NOx emissions over a wide range of eogine operation. This paper describes the effort of engine testing of the combustor to achieve NOx emissions of the 10-ppm level. Fuel was staged to the non-premixed pilot and premixed main burners. A butterfly valve air splitting system was employed to maintain both low NOx emissions and high efficieocy over a wide operating range of the engine. The engioe was operated in the lean-premixed, low NOx emissions mode from idle to full power. Over the whole operating conditions from idle to full power, NOx emissions were reduced to levels less than 25 ppm (15% O2 dry). The NOx emissions level for a nearly constant combustion efficiency decreased with increasing power or turbine inlet temperature. At operating conditions of 90% to full power, NOx emissions levels of 12 to 8 ppm (15% O2 dry) were measured with combustion efficiencies of 99.7 to 99.1%.


2005 ◽  
Vol 127 (4) ◽  
pp. 869-882 ◽  
Author(s):  
Stefano d’Ambrosio ◽  
Ezio Spessa ◽  
Alberto Vassallo

New computational procedures are proposed for evaluating the exhaust brake specific mass emissions of each pollutant species in internal combustion (IC) engines. The procedures start from the chemical reaction of fuel with combustion air and, based on the measured exhaust raw emissions THC, CH4,NOx, CO, O2,CO2, calculate the volume fractions of the compounds in the exhaust gases, including those that are not usually measured, such as water, nitrogen and hydrogen. The molecular mass of the exhaust gases is then evaluated and the brake specific emissions can be obtained if the exhaust flow rate and the engine power output are measured. The algorithm can also be applied to the evaluation of air-fuel ratio from measured raw volume emissions of IC engines. The new procedures take the effects of various fuel and combustion air compositions into account, with particular reference to different natural gas blends as well as to the presence of water vapor, CO2, Ar and He in the combustion air. In the paper, the algorithms are applied to the evaluation of air-fuel ratio and brake specific mass emissions in an automotive bi-fuel Spark Ignition (SI) engine with multipoint sequential port-fuel injection. The experimental tests were carried out in a wide range of steady-state operating conditions under both gasoline and compressed natural gas operations. The specific emissions calculated from the new procedures are compared to those evaluated by applying Society of Automotive Engineers (SAE) and International Standards Organization (ISO) recommended practices and the air-fuel ratio results are compared to those obtained either from directly measured air and fuel mass flow rates or from Universal Exhaust Gas Oxygen (UEGO) sensor data. The sensitivity of the procedure results to the main engine working parameters, the influence of environmental conditions (in particular the effect of air humidity on NOx formation) and the experimental uncertainties are also determined.


Author(s):  
Jon P. McDonald ◽  
Arthur M. Mellor

Semi–empirical characteristic time models (CTMs) for NOx emissions index (EI) and lean blowoff are used in the design of an inlet condition matrix for measurement of NOxEI from a lean premixed combustor. Such models relate either NOxEI or the weak extinction limit to times representing relevant physical and chemical processes in the combustor. Lean premixed (LP) natural gas/air combustion is considered for the following conditions: inlet temperature, 300–800 K; combustor pressure, 1–30 atm; and equivalence ratio, 0.5–0.7. The NOx model is used to determine combinations of inlet conditions corresponding to greatest NOx sensitivity. A dependence of NOx emissions on pressure is included in the model. Emissions of oxides of nitrogen are found to he most sensitive to variations in inlet temperature and combustor pressure, in the 560–800 K and 20–30 atm ranges, respectively, while sensitivity to variations in equivalence ratio is substantial over the entire range considered. Thus it is found that operating conditions for high thermal efficiency in LP turbine combustors conflict with the goal of lowering NOx emissions, a result consistent with thermal NOx from conventional, diffusion flame combustors. A lean blowoff model is used to estimate the lowest equivalence ratio at which a flame can he held, as well as to determine whether a flame can be stabilised at the operating conditions suggested by the NOx sensitivity analysis. The results suggest a nominal lower limit on equivalence ratio of 0.4, and that a flame can be held for most of the combinations of inlet conditions suggested by the NOx sensitivity analysis. Autoignition of the fuel/air mixture is also considered in relation to the location and/or design of the premixing system. The current NOx CTM is applied to LP natural gas fired data from the literature. A model modification, thought to better represent the fluid mechanics relevant to LP NOx formation, is applied, and its implications discussed.


Sign in / Sign up

Export Citation Format

Share Document