Data-Driven Approaches to Learn HyChem Models

2021 ◽  
Author(s):  
Weiqi Ji ◽  
Julian Zanders ◽  
Ji-Woong Park ◽  
Sili Deng

Abstract The HyChem (Hybrid Chemistry) approach has recently been proposed for modeling high-temperature combustion of real, multi-component fuels. The approach combines lumped reaction steps for fuel thermal and oxidative pyrolysis with detailed chemistry for the oxidation of the resulting pyrolysis products. Determining the pyrolysis submodel requires extensive experimentation on speciation measurements. Recent work has been directed to learn HyChem from an existing HyChem model for a similar fuel, which requires less data. However, the approach usually shows substantial discrepancies with experimental data within the Negative Temperature Coefficient (NTC) regime, as the low-temperature chemistry is more fuel-specific than high-temperature chemistry. This paper proposes a machine learning approach to learn the HyChem models that can cover both high-temperature and low-temperature regimes. Specifically, we develop a HyChem model using the experimental datasets of ignition delay times covering a wide range of temperatures and equivalence ratios. The chemical kinetic model is treated as a neural network model, and we then employ stochastic gradient descent (SGD), a technique that was developed for deep learning, for the training. We demonstrate the approach in learning the HyChem model for F-24, which is a Jet-A derived fuel, and compare the results with previous work employing genetic algorithms. The results show that the SGD approach can achieve comparable model performance with genetic algorithms but the computational cost is reduced by 1000 times. In addition, with regularization in SGD, the SGD approach changes the kinetic parameters from their original values much less than genetic algorithm and is thus more likely to retrain mechanistic meanings. Finally, our approach is built upon open-source packages and can be applied to the development and optimization of chemical kinetic models for internal combustion engine simulations.

2019 ◽  
Vol 35 (8) ◽  
pp. 879-915 ◽  
Author(s):  
Bona Lu ◽  
Yan Niu ◽  
Feiguo Chen ◽  
Nouman Ahmad ◽  
Wei Wang ◽  
...  

Abstract Gas-solid fluidization is intrinsically dynamic and manifests mesoscale structures spanning a wide range of length and timescales. When involved with reactions, more complex phenomena emerge and thus pose bigger challenges for modeling. As the mesoscale is critical to understand multiphase reactive flows, which the conventional two-fluid model without mesoscale modeling may be inadequate to resolve even using extremely fine grids, this review attempts to demonstrate that the energy-minimization multiscale (EMMS) model could be a starting point to develop such mesoscale modeling. Then, the EMMS-based mesoscale modeling with emphasis on formulation of drag coefficients for different fluidization regimes, modification of mass transfer coefficient, and other extensions are discussed in an attempt to resolve the emerging challenges. Its applications with examples of development of novel fluid catalytic cracking and methanol-to-olefins processes prove that the mesoscale modeling plays a remarkable role in improving the predictions in hydrodynamic behaviors and overall reaction rate. However, the product content primarily depends on the chemical kinetic model itself, suggesting the necessity of an effective coupling between chemical kinetics and flow characteristics. The mesoscale modeling can be believed to accelerate the traditional experimental-based scale-up process with much lower cost in the future.


2020 ◽  
Vol 145 ◽  
pp. 02062
Author(s):  
Canzong Zhou ◽  
Shuyi Chen ◽  
Wei Cui ◽  
Zhengmao Yao

According to the research, thermoelectricity generation can recycle the heat contained in the cooling system of internal combustion engine. This paper is about taking advantage of the feature in the huge temperature difference at about 560 °C which is formed between high-temperature engine and LNG (Liquefied Natural Gas) in low temperature and the ability that LNG provides semiconductor with thermoelectric conversion material so as to produce the maximum output voltage in low temperature. We take advantage of lead telluride materials that adapt to the high temperature environment and bismuth telluride materials that adapt to the low temperature environment, both of which forms a circuit and are designed as a thermoelectric power generation device. Also, we confirm the possibility of applying the device to cars.


By changing the temperature of deformation, during tensile experiments on single crystals of aluminium , it has proved possible to separate reversible changes of flow stress with temperature from irreversible ones. Below 130° K the reversible change of flow stress is large; above room temperature it is hardly more than the change of elastic constants with temperature. These reversible changes are highly reproducible and, over a wide range of cold-worked states, proportional to the flow stress itself. The principal irreversible effect is a sharp yield drop, accompanied by a Lüders band, which appears when a crystal is strained plastically at a high temperature (e.g. 300° K) immediately after being heavily cold-worked at a low temperature (e.g. 90° K ). Intermediate annealing treatments reduce or eliminate this yield drop. Other experiments have proved that the yield drop is not a strain-ageing phenomenon but an extreme example of work softening, and that work hardening induced by preliminary deformation at the low temperature becomes unstable during plastic deformation at the high temperature and is rapidly removed. An explanation of the yield drop is suggested, based on recent theories of work hardening. It is proposed that, under the combined influence of stress and temperature, sessile dislocations at the heads of piled-up groups of dislocations become unlocked; the piled-up groups then partly collapse and many dislocations are released for slip. The reversible changes of flow stress are interpreted in terms of the intersection of dislocation lines.


Author(s):  
Michael V. Johnson ◽  
S. Scott Goldsborough ◽  
Timothy A. Smith ◽  
Steven S. McConnell

Continued interest in kinetically-modulated combustion regimes, such as HCCI and PCCI, poses a significant challenge in controlling the ignition timing due to the lack of direct control of combustion phasing hardware available in traditional SI and CI engines. Chemical kinetic mechanisms, validated based on fundamental data from experiments like rapid compression machines and shock tubes, offer reasonably accurate predictions of ignition timing; however utilizing these requires high computational cost making them impractical for use in engine control schemes. Empirically-derived correlations offer faster control, but are generally not valid beyond the narrow range of conditions over which they were derived. This study discusses initial work in the development of an ignition correlation based on a detailed chemical kinetic mechanism for three component gasoline surrogate, composed of n-heptane, iso-octane and toluene, or toluene reference fuel (TRF). Simulations are conducted over a wide range of conditions including temperature, pressure, equivalence ratio and dilution for a range of tri-component blends in order to produce ignition delay time and investigate trends in ignition as pressure, equivalence ratio, temperature and fuel reactivity are varied. A modified, Arrhenius-based power law formulation will be used in a future study to fit the computed ignition delay times.


2021 ◽  
pp. 25-30
Author(s):  

The starting of the internal combustion engine in conditions of low and critically low ambient temperatures is considered. It is shown that a successful start of an internal combustion engine can be ensured by creating a fuel-air mixture with a high temperature outside the engine compartment. The design of a device for creating such mixture and research experimental data are presented. A new scheme of the starting device is proposed, which can be integrated into various types of internal combustion engines. Keywords: internal combustion engine, starting, low temperature, operation. [email protected]


1998 ◽  
Vol 5 (3) ◽  
pp. 929-931 ◽  
Author(s):  
C. C. Tang ◽  
G. Bushnell-Wye ◽  
R. J. Cernik

A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10–1500 K. Results from Fe and NH4Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.


Author(s):  
C. G. Fotache ◽  
D. J. Hautman ◽  
T. J. Rosfjord

A high-temperature Jet-Stirred Gas Generator (JSGG) has been designed to investigate the characteristics of combustion in the mixing layer between a flow of air and a mainstream flow of rich combustion products. The design goal is delivery of a near-equilibrium, spatially-uniform flow of combustion products for a range of Mach numbers in the test section between 0.1–0.7, pressures of 1–10 atm, and equivalence ratios of 0.5–2.0. In this paper we describe the reactor design, as well as the numerical and experimental evaluation of its operation. The FLUENT turbulent flow code was used together with a reduced chemical kinetic model for propane-air oxidation to verify the attainment of well-mixed, near-equilibrium conditions. Experiments were performed using flow sampling at the inlet of the test section by means of an optimized aerodynamic-quench probe. Both the experiments and the calculated results indicate achievement of the design goals.


2019 ◽  
Vol 98 ◽  
pp. 02002
Author(s):  
Ping Li ◽  
Dawei Jiang ◽  
Zhou Jiang

Arsenic (As) is an ubiquitous constituent in geothermal water. Arsenite (AsIII) is oxidized via microbial processes as the waters equilibrate with oxygen in the geothermal effluent. The distribution of arsenite oxdizing bacteria and its correlation with environment factors were studied in Tengchong geothermal areas of Yunnan, China. A total of 230 aioA clone sequences were obtained and these sequences were affiliated with four phyla: Betaproteobacteria, Alphaproteobacteria, Deinococcus-Thermus and Aquificae. Temperature was negatively correlated with aioA diversity and was the only environment factor that had correlation with diversity index. Betaproteobacteria was mainly distributed in low temperature (T = 28 to 43 °C) and circumneutral or light alkaline (pH = 7 to 9) springs; Alphaproteobacteria was mainly predominant in low pH (pH = 3.3 to 3.6) springs; Deinococcus-Thermus and Aquificae mainly inhabited in high temperature (T=55 to 78 °C) springs with a wide range of pH. Usually, Deinococcus-Thermus was dominant when springs had a pH within 4.0 to 8.0. Aquificae was dominated in springs with pH > 8.0 or pH < 4.0.


Sign in / Sign up

Export Citation Format

Share Document