scholarly journals INVESTIGATION OF MULTI-ZONE MODELS FOR SPARK IGNITION ENGINE FUELED WITH ETHANOL

2021 ◽  
Vol 22 (2) ◽  
pp. 339-351
Author(s):  
A. A. Dare ◽  
Olanrewaju Olatunde ◽  
O. S. Ismail ◽  
A. S. Shote ◽  
O. J. Alamu ◽  
...  

This research is aimed at investigating the effect of using ethanol (E100) in multi-zone model analysis consisting of multi-combustion chamber zoning cases. The first case considered is a three-zone model that has an unburned zone, burned zone, and transitory zone. The second case model is also three-zone, consisting of an unburned zone and two partitioned burned zones. The burned zone was imagined partitioned into burned zone-1 and burned zone-2 under uneven fuel distribution having different equivalent ratios. The third case is a four-zone model including two regions of burned zone, an unburned zone and a transitory zone, which is unburned burned zone containing a mixture of unburned and burned gases. Arbitrary constants for each of the unburned (CC1) and burned (CC2) Zone leakages in the unburned burned Zone are 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 and 0.5. The Mass Fraction Burned (MFB) for zone-1, x1 and burned zone-2, x2 are computed using Partitioned Burnt Zones Ratios (PBZR) of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2. Two equivalent ratios, one for each fuel MFB (?1, ?2), (0.8, 0.6) and (0.6, 0.8) are analyzed using fuel blends of varying percentage. A comparison of values of the three zoning cases is done using peak values from the three-zone models to evaluate the four-zone model. The model was compared with a spark ignition engine (SIE) operating with a premium motor spirit (PMS) serving as baseline. The engine operating conditions were set at an engine speed of 2000 rpm, -35bTDC ignition time, and burn duration at 60 oC. The indicated mean effective pressure (IMEP), thermal efficiency (?), cylinder pressure and emission fraction from the developed models and those of two-zone analysis obtained agreed with literature values. The result showed it is undesirable to have a high volume of burned charge as infiltrate. The three-zone segmented model predicted the highest engine thermal efficiency and peak pressure at mass burn ratio of 7:3. A general reduction in N2 emission was observed for the three-zone transitional and four-zone models. ABSTRAK: Kajian ini menilai kesan etanol (E100) dalam analisis model zon-berbilang yang terdapat pada masalah pengezonan kebuk pembakaran-berbilang. Kes pertama yang diambil kira adalah model tiga-zon yang mempunyai zon tidak terbakar, zon terbakar dan zon peralihan. Model kedua merupakan juga tiga-zon yang terdiri daripada zon tidak-terbakar dan dua zon bahagian yang terbakar. Zon yang terbakar dibahagikan kepada zon-1 terbakar dan zon-2 terbakar di bawah kebakaran tidak sekata yang mempunyai nisbah berlainan. Kes ketiga adalah model zon-keempat termasuk dua kawasan zon terbakar, zon tidak-terbakar dan zon peralihan iaitu zon terbakar tidak-terbakar di mana ia adalah campuran gas terbakar dan tidak-terbakar. Tetapan sebarangan bagi setiap zon kebocoran tidak-terbakar (CC1) dan terbakar (CC2) dalam zon terbakar tidak-terbakar adalah 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 dan 0.5. Pecahan Jisim Terbakar (MFB) bagi zon-1, x1 dan zon-2 terbakar, x2 dikira menggunakan Nisbah Zon Bahagian Terbakar (PBZR) sebanyak 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 dan 8:2. Nisbah dua persamaan, setiap satu bahan api MFB adalah (?1, ?2), (0.8, 0.6) dan (0.6, 0.8) dan diuji menggunakan pelbagai peratus bahan api campuran. Nilai perbandingan bagi tiga kes zon dibuat menggunakan nilai puncak dari model tiga-zon bagi menilai model empat-zon. Model ini dibandingkan dengan enjin cucuhan bunga api (SIE) beroperasi dengan motor alkohol premium (PMS) sebagai garis asas. Keadaan operasi enjin adalah dihadkan pada 2000 rpm kelajuan enjin, masa pencucuhan -35bTDC dan tempoh pembakaran pada 60 oC. Tekanan berkesan min tertunjuk (IMEP), kecekapan haba tertunjuk (?), tekanan silinder dan pecahan pengeluaran dari model yang dibangunkan dan analisis dua-zon yang terhasil adalah sama dengan nilai literatur. Dapatan kajian menunjukkan cas terbakar pada isipadu yang banyak adalah tidak diingini sebagai penyerap. Model tiga bahagian zon menunjukkan kecekapan haba enjin tertinggi dan tekanan puncak pada jisim bakar dengan nisbah 7:3. Manakala, pengurangan umum telah diperhatikan pada pengeluaran N2 di peralihan tiga-zon dan model empat zon.

Author(s):  
Fazal Um Min Allah ◽  
Caio Henrique Rufino ◽  
Waldyr Luiz Ribeiro Gallo ◽  
Clayton Barcelos Zabeu

Abstract The flex-fuel engines are quite capable of running on gasohol and hydrous ethanol. However, the in-cylinder cyclic variations, which are inherently present in spark-ignition (SI) engines, affect the performance of these engines. Therefore, a comprehensive analysis is required to evaluate the effects of in-cylinder cyclic variations of a flex-fuel engine. The experiments were carried out by using Brazilian commercial Gasohol E27 (mixture of 27% anhydrous ethanol in gasoline) and hydrous ethanol E95h (5% water by volume in ethanol) as fuels for a commercial flex-fuel spark ignition engine. A comparison between the cyclic variations of gasohol and hydrous ethanol is presented in this paper. Moreover, the effects of engine operating parameters (i.e., engine speed, engine load and relative air fuel ratio) on cyclic variations are also investigated. The acquired data of in-cylinder pressure and combustion durations are evaluated by carrying out a statistical analysis. The coefficient of variation for indicated mean effective pressure (IMEP) did not exceed the limit of 5% for all tested conditions. Higher cyclic variability of maximum in-cylinder pressure is observed for gasohol fuel and higher engine speeds. The variability of in-cylinder combustion is also evaluated with the help of different combustion stages, which are characterized by corresponding crank positions of 10%, 50% and 90% mass fractions burned.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. The performance data reported often tend not to display consistent agreement between the various investigators mainly because of the wide differences in engine type, size, operating conditions used and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. The paper employs a quasi-dimensional two-zone model for the operation of S.I. engines when fuelled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fuelled engine applications (Shrestha and Karim 1999(a) and 1999(b)) was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency and operational limits were investigated. The results of this predictive approach were shown to validate well against corresponding experimental results of our own and those of others, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature and spark timing are presented and discussed. Some guidelines for superior knock free-operation of engines on hydrogen are made also.


2004 ◽  
Vol 128 (1) ◽  
pp. 230-236 ◽  
Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.


1970 ◽  
Vol 185 (1) ◽  
pp. 857-867 ◽  
Author(s):  
W. J. D. Annand ◽  
S. J. Sulaiman

Observations of knock limits, in terms of ignition time for borderline knock, are presented for methane and propane at a range of supercharge conditions up to 9 ***lbf/in2boost, in a spark-ignition engine of 105 mm bore running at speeds of 600 and 920 rev/min, with compression ratios of 7·7/1 and 9·5/1. Associated measurements of output and economy are given. Less extensive observations on a butane fuel, and on methane-propane and propane-butane mixtures, are also included. From an examination of computed temperature-pressure histories in the unburned portion of the mixture, it is found that the knock limited ignition advance on the propane fuel at chemically-correct mixture can be closely predicted over the full range of operating conditions covered, by the attainment of a certain critical value of a simple parameter.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Abstract Biogas, which is a renewable alternative fuel, has high antiknocking properties with the potential to substitute fossil fuels in internal combustion engines. In this study, performance characteristics of a spark-ignition (SI) engine operated under methane (baseline case) and biogas are compared at the compression ratio (CR) of 8.5:1. Subsequently, the effect of CR on operational limits, performance, combustion, and emission characteristics of the engine fueled with biogas is evaluated. A variable compression ratio, spark-ignition engine was operated at various CRs of 8.5:1, 10:1, 11:1, 13:1, and 15:1 over a wide range of operating loads at 1500 rpm. Results showed that the operating range of the engine at 8.5:1 CR reduced when biogas was utilized in the engine instead of methane. However, the operating range of the engine for biogas extended with an increase in CR—an increase from 9.6 N-m-16.5 N-m to 2.8 N-m-15.1 N-m was observed when CR was increased from 8.5:1 to 15:1. The brake thermal efficiency improved from 13.7% to 16.3%, and the coefficient of variation (COV) of indicated mean effective pressure (IMEP) reduced from 12.7% to 1.52% when CR was increased from 8.5:1 to 15:1 at 8 N-m load. The emission level of carbon dioxide was decreased with an increase in CR due to an improvement in the thermal efficiency and the combustion process.


Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Biogas is a promising alternative fuel to reduce the consumption of petroleum-based fuels in internal combustion (IC) engines. In this work, the effect of various biogas compositions on the performance, combustion, and emission characteristics of a spark-ignition (SI) engine is investigated. Additionally, the effect of Wobbe index (WI) of various fuel compositions was also evaluated on the operational limits of the engine. While considering a wide range of biogas compositions (including bio-methane), the percentage of carbon dioxide (CO2) (in a blend of methane and CO2) was increased from 0 to 50% (by volume). A single-cylinder, water-cooled, SI engine was operated at 1500 rpm over a wide range of operating loads with compression ratio of 8.5:1. With the increase in WI of the fuel, both low (limited by coefficient of variation (COV) of indicated mean effective pressure (IMEP)) and high (limited by pre-ignition) operating loads were decreased; however, it was found that the overall operating range was increased. Results also showed that for a given operating load, with the increase of CO2 percentage in the fuel, the brake thermal efficiency was decreased, and the flame initiation and combustion durations were increased. The brake thermal efficiency was decreased from 16.8% to 13.7%, when CO2 was increased from 0% to 40% in methane–CO2 mixture at 8 N·m load. Concerning to emissions, a considerable decrease was noted in nitric oxide, whereas hydrocarbon, carbon monoxide and carbon dioxide emissions were increased, with the increase in CO2 percentage.


Author(s):  
F-J Liu ◽  
P Liu ◽  
Z Zhu ◽  
Y-J Wei ◽  
S-H Liu

The effects of ethanol addition to gasoline on the exhaust emissions (including regulated and unregulated emissions) and the conversion efficiencies of the three-way catalyst (TWC) were investigated in a three-cylinder spark-ignition (SI) gasoline engine. Three typical fuel blends – commercial 93# (Research Octane Number) gasoline (E0), E10, and E20 (with 0 per cent, 10 per cent, and 20 per cent ethanol in the blends by volume) – were used in the experiment. Unregulated emissions were measured by gas chromatography with a pulsed discharge helium ionization detector. Experimental results show that the regulated emissions of hydrocarbon, carbon monoxide, and nitrogen oxides decreased before and after the TWC with the increase of ethanol fraction in the fuel blends. However, the unregulated emissions of ethanol, acetaldehyde, and formaldehyde increased with the increase of ethanol fraction and decreased with increased engine speed and/or torque. Ethanol emission was not detected when fuelled with gasoline (E0). Ethanol emission was intensively influenced by the exhaust temperature and disappeared when the exhaust temperature was higher than 900 K for E10 and E20 operation. Acetaldehyde emission definitely comes from the oxidation of ethanol; the engine speed and load have opposite effects on acetaldehyde emission. Both ethanol and acetaldehyde can be converted effectively by the TWC. More formaldehyde was emitted at higher engine speed and lower load operating conditions.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Melih Yıldız ◽  
Bilge Albayrak Çeper

For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles, low emission values of diesel engines, high fuel economy and output power, thereby achieving optimum values in internal combustion engines. In this context, to improve the engine performance and increase the volumetric and thermal efficiency of the engine in all operating conditions to minimize the power losses and to reduce the exhaust emissions in order to obtain the maximum power, most economical and without environmental pollution, continues to be updated. In this study, the optimum working map of the engine was obtained by considering the power, torque, specific fuel consumption, cylinder pressure, exhaust gas temperature, thermal efficiency, average effective pressure, heat dissipation rate and emissions of four stroke, two cylinder, spark ignition SI engine fuel.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Sign in / Sign up

Export Citation Format

Share Document