Assessing the Influence of Compression Ratio on Engine Characteristics Including Operational Limits of a Biogas-Fueled Spark-Ignition Engine

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Abstract Biogas, which is a renewable alternative fuel, has high antiknocking properties with the potential to substitute fossil fuels in internal combustion engines. In this study, performance characteristics of a spark-ignition (SI) engine operated under methane (baseline case) and biogas are compared at the compression ratio (CR) of 8.5:1. Subsequently, the effect of CR on operational limits, performance, combustion, and emission characteristics of the engine fueled with biogas is evaluated. A variable compression ratio, spark-ignition engine was operated at various CRs of 8.5:1, 10:1, 11:1, 13:1, and 15:1 over a wide range of operating loads at 1500 rpm. Results showed that the operating range of the engine at 8.5:1 CR reduced when biogas was utilized in the engine instead of methane. However, the operating range of the engine for biogas extended with an increase in CR—an increase from 9.6 N-m-16.5 N-m to 2.8 N-m-15.1 N-m was observed when CR was increased from 8.5:1 to 15:1. The brake thermal efficiency improved from 13.7% to 16.3%, and the coefficient of variation (COV) of indicated mean effective pressure (IMEP) reduced from 12.7% to 1.52% when CR was increased from 8.5:1 to 15:1 at 8 N-m load. The emission level of carbon dioxide was decreased with an increase in CR due to an improvement in the thermal efficiency and the combustion process.

2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7037
Author(s):  
Donatas Kriaučiūnas ◽  
Tadas Žvirblis ◽  
Kristina Kilikevičienė ◽  
Artūras Kilikevičius ◽  
Jonas Matijošius ◽  
...  

Biogas has increasingly been used as an alternative to fossil fuels in the world due to a number of factors, including the availability of raw materials, extensive resources, relatively cheap production and sufficient energy efficiency in internal combustion engines. Tightening environmental and renewable energy requirements create excellent prospects for biogas (BG) as a fuel. A study was conducted on a 1.6-L spark ignition (SI) engine (HR16DE), testing simulated biogas with different methane and carbon dioxide contents (100CH4, 80CH4_20CO2, 60CH4_40CO2, and 50CH4_50CO2) as fuel. The rate of heat release (ROHR) was calculated for each fuel. Vibration acceleration time, sound pressure and spectrum characteristics were also analyzed. The results of the study revealed which vibration of the engine correlates with combustion intensity, which is directly related to the main measure of engine energy efficiency—break thermal efficiency (BTE). Increasing vibrations have a negative correlation with carbon monoxide (CO) and hydrocarbon (HC) emissions, but a positive correlation with nitrogen oxide (NOx) emissions. Sound pressure also relates to the combustion process, but, in contrast to vibration, had a negative correlation with BTE and NOx, and a positive correlation with emissions of incomplete combustion products (CO, HC).


1999 ◽  
Author(s):  
Toshio Shudo ◽  
Yasuo Nakajima ◽  
Takayuki Futakuchi

Abstract Hydrogen has higher flame velocity and smaller quenching distance than hydrocarbon fuels, and is supposed to have special characteristics in combustion process of internal combustion engines. In this research, contributors to thermal efficiency in a hydrogen premixed spark ignition engine were analyzed and compared with methane combustion. Results showed hydrogen combustion had higher cooling loss to combustion chamber wall, and thermal efficiency of hydrogen combustion was mainly dominated by both cooling loss to combustion chamber wall and degree of constant volume combustion.


Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Biogas is a promising alternative fuel to reduce the consumption of petroleum-based fuels in internal combustion (IC) engines. In this work, the effect of various biogas compositions on the performance, combustion, and emission characteristics of a spark-ignition (SI) engine is investigated. Additionally, the effect of Wobbe index (WI) of various fuel compositions was also evaluated on the operational limits of the engine. While considering a wide range of biogas compositions (including bio-methane), the percentage of carbon dioxide (CO2) (in a blend of methane and CO2) was increased from 0 to 50% (by volume). A single-cylinder, water-cooled, SI engine was operated at 1500 rpm over a wide range of operating loads with compression ratio of 8.5:1. With the increase in WI of the fuel, both low (limited by coefficient of variation (COV) of indicated mean effective pressure (IMEP)) and high (limited by pre-ignition) operating loads were decreased; however, it was found that the overall operating range was increased. Results also showed that for a given operating load, with the increase of CO2 percentage in the fuel, the brake thermal efficiency was decreased, and the flame initiation and combustion durations were increased. The brake thermal efficiency was decreased from 16.8% to 13.7%, when CO2 was increased from 0% to 40% in methane–CO2 mixture at 8 N·m load. Concerning to emissions, a considerable decrease was noted in nitric oxide, whereas hydrocarbon, carbon monoxide and carbon dioxide emissions were increased, with the increase in CO2 percentage.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Melih Yıldız ◽  
Bilge Albayrak Çeper

For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles, low emission values of diesel engines, high fuel economy and output power, thereby achieving optimum values in internal combustion engines. In this context, to improve the engine performance and increase the volumetric and thermal efficiency of the engine in all operating conditions to minimize the power losses and to reduce the exhaust emissions in order to obtain the maximum power, most economical and without environmental pollution, continues to be updated. In this study, the optimum working map of the engine was obtained by considering the power, torque, specific fuel consumption, cylinder pressure, exhaust gas temperature, thermal efficiency, average effective pressure, heat dissipation rate and emissions of four stroke, two cylinder, spark ignition SI engine fuel.


Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. The performance data reported often tend not to display consistent agreement between the various investigators mainly because of the wide differences in engine type, size, operating conditions used and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. The paper employs a quasi-dimensional two-zone model for the operation of S.I. engines when fuelled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fuelled engine applications (Shrestha and Karim 1999(a) and 1999(b)) was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency and operational limits were investigated. The results of this predictive approach were shown to validate well against corresponding experimental results of our own and those of others, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature and spark timing are presented and discussed. Some guidelines for superior knock free-operation of engines on hydrogen are made also.


Author(s):  
Jerald A. Caton

The use of either hydrogen or isooctane for a spark-ignition engine was examined using a thermodynamic cycle simulation including the second law of thermodynamics. The engine studied was a 5.7 liter, automotive engine operating from idle to wide open throttle. The hydrogen or isooctane was assumed premixed with the air. Two features of hydrogen combustion that were included in the study were the higher flame speeds (shorter burn durations) and the wider lean flammability limits (lean equivalence ratios). Three cases were considered for the use of hydrogen: (1) standard burn duration and an equivalence ratio of 1.0, (2) a shorter burn duration and an equivalence ratio of 1.0, and (3) a shorter burn duration and variable, lean equivalence ratios. The results included thermal efficiencies, other performance metrics, second law parameters, and nitric oxide emissions. In general, for the cases with an equivalence of 1.0, the brake thermal efficiency was slightly lower for the hydrogen cases due to the higher temperatures and higher heat losses. For the variable, lean equivalence ratio cases, the thermal efficiency was higher for the hydrogen case relative to the isooctane case. Due to the higher temperatures, the hydrogen cases had over 50% higher nitric oxide emissions compared to the isooctane case at the base conditions. In addition, the second law analyses indicated that the destruction of availability during the combustion process was lower for the base hydrogen case (11.2%) relative to the isooctane case (21.1%).


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.


2021 ◽  
Vol 22 (2) ◽  
pp. 339-351
Author(s):  
A. A. Dare ◽  
Olanrewaju Olatunde ◽  
O. S. Ismail ◽  
A. S. Shote ◽  
O. J. Alamu ◽  
...  

This research is aimed at investigating the effect of using ethanol (E100) in multi-zone model analysis consisting of multi-combustion chamber zoning cases. The first case considered is a three-zone model that has an unburned zone, burned zone, and transitory zone. The second case model is also three-zone, consisting of an unburned zone and two partitioned burned zones. The burned zone was imagined partitioned into burned zone-1 and burned zone-2 under uneven fuel distribution having different equivalent ratios. The third case is a four-zone model including two regions of burned zone, an unburned zone and a transitory zone, which is unburned burned zone containing a mixture of unburned and burned gases. Arbitrary constants for each of the unburned (CC1) and burned (CC2) Zone leakages in the unburned burned Zone are 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 and 0.5. The Mass Fraction Burned (MFB) for zone-1, x1 and burned zone-2, x2 are computed using Partitioned Burnt Zones Ratios (PBZR) of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2. Two equivalent ratios, one for each fuel MFB (?1, ?2), (0.8, 0.6) and (0.6, 0.8) are analyzed using fuel blends of varying percentage. A comparison of values of the three zoning cases is done using peak values from the three-zone models to evaluate the four-zone model. The model was compared with a spark ignition engine (SIE) operating with a premium motor spirit (PMS) serving as baseline. The engine operating conditions were set at an engine speed of 2000 rpm, -35bTDC ignition time, and burn duration at 60 oC. The indicated mean effective pressure (IMEP), thermal efficiency (?), cylinder pressure and emission fraction from the developed models and those of two-zone analysis obtained agreed with literature values. The result showed it is undesirable to have a high volume of burned charge as infiltrate. The three-zone segmented model predicted the highest engine thermal efficiency and peak pressure at mass burn ratio of 7:3. A general reduction in N2 emission was observed for the three-zone transitional and four-zone models. ABSTRAK: Kajian ini menilai kesan etanol (E100) dalam analisis model zon-berbilang yang terdapat pada masalah pengezonan kebuk pembakaran-berbilang. Kes pertama yang diambil kira adalah model tiga-zon yang mempunyai zon tidak terbakar, zon terbakar dan zon peralihan. Model kedua merupakan juga tiga-zon yang terdiri daripada zon tidak-terbakar dan dua zon bahagian yang terbakar. Zon yang terbakar dibahagikan kepada zon-1 terbakar dan zon-2 terbakar di bawah kebakaran tidak sekata yang mempunyai nisbah berlainan. Kes ketiga adalah model zon-keempat termasuk dua kawasan zon terbakar, zon tidak-terbakar dan zon peralihan iaitu zon terbakar tidak-terbakar di mana ia adalah campuran gas terbakar dan tidak-terbakar. Tetapan sebarangan bagi setiap zon kebocoran tidak-terbakar (CC1) dan terbakar (CC2) dalam zon terbakar tidak-terbakar adalah 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 dan 0.5. Pecahan Jisim Terbakar (MFB) bagi zon-1, x1 dan zon-2 terbakar, x2 dikira menggunakan Nisbah Zon Bahagian Terbakar (PBZR) sebanyak 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 dan 8:2. Nisbah dua persamaan, setiap satu bahan api MFB adalah (?1, ?2), (0.8, 0.6) dan (0.6, 0.8) dan diuji menggunakan pelbagai peratus bahan api campuran. Nilai perbandingan bagi tiga kes zon dibuat menggunakan nilai puncak dari model tiga-zon bagi menilai model empat-zon. Model ini dibandingkan dengan enjin cucuhan bunga api (SIE) beroperasi dengan motor alkohol premium (PMS) sebagai garis asas. Keadaan operasi enjin adalah dihadkan pada 2000 rpm kelajuan enjin, masa pencucuhan -35bTDC dan tempoh pembakaran pada 60 oC. Tekanan berkesan min tertunjuk (IMEP), kecekapan haba tertunjuk (?), tekanan silinder dan pecahan pengeluaran dari model yang dibangunkan dan analisis dua-zon yang terhasil adalah sama dengan nilai literatur. Dapatan kajian menunjukkan cas terbakar pada isipadu yang banyak adalah tidak diingini sebagai penyerap. Model tiga bahagian zon menunjukkan kecekapan haba enjin tertinggi dan tekanan puncak pada jisim bakar dengan nisbah 7:3. Manakala, pengurangan umum telah diperhatikan pada pengeluaran N2 di peralihan tiga-zon dan model empat zon.


Sign in / Sign up

Export Citation Format

Share Document