Effects of Curved Section on Gas-Liquid Two-Phase Flow in Milli-Channel

Author(s):  
Kazuki Takeda ◽  
Shinpei Okamoto ◽  
Kenji Yoshida ◽  
Isao Kataoka

In recent years, we can easily find the gas-liquid two-phase flow in narrow channel which has straight section and curved section in many industrial products. In order to improve the performance of these industrial products, it is important to clarify the effects of curved section on gas-liquid two-phase flow behavior in narrow channel. In this study, we have measured the pressure loss precisely on straight section and curved section in milli-channel respectively. From the measured pressure loss, we evaluated the mean pressure loss and its intensity. Flow visualization by using high-speed video camera was additionally performed to make clear the relation between modification of pressure loss and flow pattern in curved section. As a result, effects of curved section on gas-liquid two-phase flow in narrow channel were evaluated.

Author(s):  
Lissett Barrios ◽  
Mauricio Gargaglione Prado

Dynamic multiphase flow behavior inside a mixed flow Electrical Submersible Pump (ESP) has been studied experimentally and theoretically for the first time. The overall objectives of this study are to determine the flow patterns and bubble behavior inside the ESP and to predict the operational conditions that cause surging. An experimental facility has been designed and constructed to enable flow pattern visualization inside the second stage of a real ESP. Special high speed instrumentation was selected to acquire visual flow dynamics and bubble size measurements inside the impeller channel. Experimental data was acquired utilizing two types of tests (surging test and bubble diameter measurement test) to completely evaluate the pump behavior at different operational conditions. A similarity analysis performed for single-phase flow inside the pump concluded that viscosity effects are negligible compared to the centrifugal field effects for rotational speeds higher than 600 rpm. Therefore, the two-phase flow tests were performed for rotational speeds of 600, 900, 1200, and 1500 rpm. Results showed formation of a large gas pocket at the pump intake during surging conditions.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Lissett Barrios ◽  
Mauricio Gargaglione Prado

Dynamic multiphase flow behavior inside a mixed flow electrical submersible pump (ESP) has been studied experimentally and theoretically for the first time. The overall objectives of this study are to determine the flow patterns and bubble behavior inside the ESP and to predict the operational conditions that cause surging. An experimental facility has been designed and constructed to enable flow pattern visualization inside the second stage of a real ESP. Special high-speed instrumentation was selected to acquire visual flow dynamics and bubble size measurements inside the impeller channel. Experimental data were acquired utilizing two types of tests (surging test and bubble diameter measurement test) to completely evaluate the pump behavior at different operational conditions. A similarity analysis performed for single-phase flow inside the pump concluded that viscosity effects are negligible compared to the centrifugal field effects for rotational speeds higher than 600 rpm. Therefore, the two-phase flow tests were performed for a rotational speeds of 600, 900, 1200, and 1500 rpm. Results showed formation of a large gas pocket at the pump intake during surging conditions.


Author(s):  
Kazuyuki Takase ◽  
Hiep H. Nguyen ◽  
Gaku Takase ◽  
Yoshihisa Hiraki

Clarifying two-phase flow characteristics in a nuclear reactor core is important in particular to enhance the thermo-fluid safety of nuclear reactors. Moreover, bubbly flow data in subchannels with spacers are needed as validation data for current CFD codes like a direct two-phase flow analysis code. In order to investigate the spacer effect on the bubbly flow behavior in a subchannel of the nuclear reactor, bubble dynamics around the simply simulated spacer was visually observed by a high speed camera. Furthermore, the void fraction and interfacial velocity distributions just behind the simulated spacer were measured quantitatively by using a wire-mesh sensor system with three wire-layers in the flow direction. From the present study, bubble separation behavior dependence upon the spacer shape was clarified.


2006 ◽  
Author(s):  
Alexandru Herescu ◽  
Jeffrey S. Allen

High speed microscopy experiments investigating two-phase (gas-liquid) flow behavior in capillary-scale systems, that is, systems where capillary forces are important relative to gravitational forces, have revealed a unique unsteady annular flow with periodic destabilization of the gas-liquid interface. Standing waves develop on the liquid film and grow into annular lobes similar with those observed in low-speed two-phase flow. The leading face of the lobe will decelerate and suddenly become normal to the wall of the capillary, suggesting the possibility of a shock wave in the gas phase at a downstream location from the minimum gas flow section. Visualization of the naturally occurring convergent-divergent nozzle-like structures as well as a discussion on the possibility of shock wave formation are presented.


Author(s):  
Mehmet Sorgun ◽  
Reza E. Osgouei ◽  
M. Evren Ozbayoglu ◽  
A. Murat Ozbayoglu

Although flow of two-phase fluids is studied in detailed for pipes, there exists a lack of information about aerated fluid flow behavior inside a wellbore. This study aims to simulate gas-liquid flow inside horizontal eccentric annulus using an Eulerian-Eulerian computational fluid dynamics (CFD) model for two-phase flow patterns i.e., dispersed bubble, dispersed annular, plug, slug, churn, wavy annular. To perform experiments using air-water mixtures for various in-situ air and water flow rates, a flow loop was constructed. A digital high speed camera is used for recording each test dynamically for identification of the liquid holdup and flow patterns. Results showed that CFD model predicts frictional pressure losses with an error less than 20% for all two-phase flow patterns when compared with experimental data.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


Author(s):  
Maral Taghva ◽  
Lars Damkilde

To protect a pressurized system from overpressure, one of the most established strategies is to install a Pressure Safety Valve (PSV). Therefore, the excess pressure of the system is relieved through a vent pipe when PSV opens. The vent pipe is also called “PSV Outlet Header”. After the process starts, a transient two-phase flow is formed inside the outlet header consisting of high speed pressurized gas interacting with existing static air. The high-speed jet compresses the static air towards the end tail of the pipe until it is discharged to the ambiance and eventually, the steady state is achieved. Here, this transient process is investigated both analytically and numerically using the method of characteristics. Riemann’s solvers and Godunov’s method are utilized to establish the solution. Propagation of shock waves and flow property alterations are clearly demonstrated throughout the simulations. The results show strong shock waves as well as high transient pressure take place inside the outlet header. This is particularly important since it indicates the significance of accounting for shock waves and transient pressure, in contrast to commonly accepted steady state calculations. More precisely, shock waves and transient pressure could lead to failure, if the pipe thickness is chosen only based on conventional steady state calculations.


1983 ◽  
Vol 105 (4) ◽  
pp. 394-399 ◽  
Author(s):  
H. Pascal

The effect of solution gas on the two-phase flow behavior through an orifice plate and a convergent-divergent nozzle has been investigated with regard to the flow metering of compressible two-phase mixtures. A proper thermodynamics approach to consider more accurately the compressibility effect in an accelerated two-phase flow, in particular that through an orifice and Laval’s nozzle in the presence of the solution gas, has been developed. From this approach an equation of state of mixture was derived and used in determining the orifice equation. An analysis of flow behavior has been performed and several illustrative plots were presented in order to evaluate the gas solubility effect in the flow metering with an orifice plate or a convergent-divergent nozzle. A delimitation between critical and noncritical flow has been established in terms of measured parameters and a relationship between the critical pressure and gas-liquid mass ratio was also shown.


2004 ◽  
Vol 2004.57 (0) ◽  
pp. 125-126
Author(s):  
Goki AKIYOSHI ◽  
Mohammad Ariful ISLAM ◽  
Akio MIYARA ◽  
Takahisa KUROKAWA

Sign in / Sign up

Export Citation Format

Share Document