Experimental Verification of Analytical Prediction of Pool Boiling CHF Incorporating the Effects of EHD and Contact Angle

Author(s):  
Ichiro Kano ◽  
Takahiro Sato ◽  
Naoki Okamoto

Boiling heat transfer enhancement via compound effect of Electro-Hydro-Dynamic (EHD) and contact angle has been experimentally and analytically investigated. A fluorinated dielectric liquid (Asahi Glass Co. Ltd, AE-3000) was selected as the working fluid. Pool boiling heat transfer in the saturated liquid was measured at atmospheric pressure. In order to change the contact angle between the boiling surface and the dielectric liquid, the different materials Cu, Cr, NiB, Sn, and mixture of 5 and 1.5 micro meter diamond particles were electrically deposited on a boiling surface. The critical heat flux (CHF) for different contact angles showed 20.5 ∼ 26.9 W/cm2 which was −7 ∼ 25 % of that for a non-coated Cu surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the micro structured surface (the mixture of 5 and 1.5 micro meter particles), a CHF of 99 W/cm2 at a superheat of 33.5 K was obtained. The previous theoretical equation of pool boiling predicted the CHF with the electric field and without the electrode.

2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Ichiro Kano ◽  
Naoki Okamoto

Enhancing of boiling heat transfer by combining the electrohydrodynamic (EHD) effect and surface wettability has been shown to remove the high heat fluxes from electrical devices such as laser diodes, light emitting diodes, and central processing units. However, this phenomenon is not well understood. Our previous studies on the critical heat flux (CHF) of pool boiling have shown that CHF greatly increases with the application of an electric field and that the wall temperature can be decreased to a level with the safe operation of the electrical devices by using a low contact angle with the boiling surface. To verify the earlier prediction model, CHF enhancement by changing the contact angle with the boiling surface and by the application of an electric field was investigated. A fluorinated dielectric liquid (Asahi Glass Co. Ltd, Tokyo, Japan, AE-3000) was selected as the working fluid. To allow the contact angle between the boiling surface and the dielectric liquid to be changed, several different materials (Cu, Cr, NiB, Sn) and a surface coated with a mixture of 1.5 and 5 μm diamond particles were used as boiling surfaces. The CHFs at different contact angles were 20.5–26.9 W/cm2, corresponding to 95–125% of that for a polished Cu surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the microstructured surface (the mixture of 1.5 μm and 5 μm diamond particles), a CHF of 99 W/cm2 at a superheat of 33.5 K was obtained. Based on this experimental evidence, we normalized the CHF and contact angle using our previously developed hydrodynamic instability model and semi-empirical model derived from the interfacial area density close to the boiling surface. This procedure allowed us to develop a general model that predicted CHF well, including the CHF for the de-ionized (DI) water.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Ichiro Kano

Boiling heat transfer enhancement via compound effect of the electrohydrodynamic (EHD) effect and microstructured surfaces has been experimentally and analytically investigated. A fluorinated dielectric liquid (Asahi Glass Co., Ltd., AE-3000) was selected as the working fluid. Pool boiling heat transfer in the saturated liquid was measured at atmospheric pressure. Microstructured surfaces, which are mainly used for cutting tools, were developed with diamond particles using electrodeposition technique. Four different particle diameters were prepared: 5, 10, 15, and a mixture of 5 and 1.5 μm. The critical heat flux (CHF) for diamond particle surfaces showed 27–30 W/cm2 which was 26–40% increase for comparing with a noncoated surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the microstructured surface (a mixture of 5 and 1.5 μm particles), a CHF of 70.2 W/cm2 at a superheat of 21.7 K was obtained. The previous theoretical equation of pool boiling predicted the CHF with electric field and without the electrode within 10%. Also, the CHF enhanced by the diamond coated surfaces was correlated well with the contact angle.


Author(s):  
Sathiyanathan Sargunanathan ◽  
Abhishek Basavanna ◽  
Navdeep S. Dhillon ◽  
Seyed Reza Mahmoudi

The formation and departure of bubbles on hot surfaces is of fundamental significance in many engineering applications including in boiling heat transfer. Both the bubble growth behavior and the boiling heat transfer performance parameters are affected by different variables and conditions, an interesting one of which is the electric field. Understanding its effect is of considerable significance, as it has been observed experimentally that the application of an electric field can lead to a significant enhancement in the boiling critical heat flux of a dielectric fluid. Although the exact physical mechanism behind this effect is not well understood, we hypothesize that it could be correlated to the effect of the electric field on individual evaporating bubbles and their altered interactions with the boiling surface. In this study, we employ optical and infrared imaging techniques to experimentally illustrate the effect of an applied electric field on the behavior of bubbles in sub-cooled pool boiling of a dielectric liquid (HFE-7100). Results indicate that bubble nucleation behavior, bubble geometry, and the bubble three-phase contact line dynamics are all simultaneously affected by the electric field. To help explain the experimental results, we further implement a CFD numerical model of an individual vapor bubble in the presence of an applied electric field.


Author(s):  
Adam R. Girard ◽  
Jinsub Kim ◽  
Seung M. You

The effect of wettability on boiling heat transfer (BHT) coefficient and critical heat flux (CHF) in pool boiling of water on hydrophilic surfaces having different contact angles was investigated. Hot alkali solutions were utilized to promote cupric and cuprous oxide growth which exhibited micro and nanoscale structures on copper surfaces, with thicknesses on the order of a couple of micrometers. These structure and surface energy variations result in different levels of wettability and roughness while maintaining the effusivity of the bare copper surface. The study showed that the BHT coefficient has an inverse relationship to wettability; the BHT coefficient decreases as wettability increases. Furthermore, it was shown that this dependency between BHT coefficient and wettability is more significant than the relationship between BHT coefficient and surface roughness. The CHF was also found to increase with increases in wettability and roughness. For the most hydrophilic surface tested in this study, CHF values were recorded near the 2,000 kW/m2 mark. This value is compared with maximum values reported in literature for water on non-structured flat surfaces without area enhancements. Based on these results it is postulated that there exists a true hydrodynamic CHF limit for pool boiling with water on flat surfaces, very near 2,000 kW/m2, independent of heater material, representing an 80% increase in the limit suggested by Zuber [1].


Author(s):  
Moo Hwan Kim

Recently, there were lots of researches about enormous CHF enhancement with the nanofluid in pool boiling and flow boiling. It is supposed the deposition of nanoparticles on the heated surface is one of main reasons. In a real application, nanofluid has a lot of problems to be used as the working fluid because of sedimentation and aggregation. The artificial surfaces on silicon and metal were developed to have the similar effect with nanoparticles deposited on the surface. The modified surface showed the enormous ability to increase CHF in pool boiling. Furthermore, under flow boiling, it had also good results to increase CHF. In these studies, we concluded that wetting ability of surface; e.g. wettability and liquid spreading ability (hydrophilic property of surface) was a key parameter to increase CHF under both pool and flow boiling. In addition, using wettability difference of surface; e.g. hydrophilic and hydrophobic, we conducted some tests of BHT (boiling heat transfer) enhancement using the oxide silicon which have micro-sized hydrophobic islands on hydrophilic surface. By using both of these techniques, we propose an optimized surface to increase both CHF and BHT. Also, the fuel surface of nuclear power plants is modified to have same effect and the results shows a good enhancement of CHF, too.


1999 ◽  
Vol 121 (2) ◽  
pp. 488-493 ◽  
Author(s):  
S. G. Kandlikar ◽  
L. Alves

Pool boiling heat transfer with dilute binary mixtures introduces two additional effects due to binary diffusion, and due to change in the surface tension. The secondary effects due to changes in contact angle and wetting characteristics may also play a role. The present study focuses on identifying these effects for dilute aqueous solutions of ethylene glycol. Pool boiling experiments are conducted to generate data in the range of one to ten percent mass fraction. It is found that in the low concentration region, the binary diffusion effects are insignificant for aqueous solutions of ethylene glycol, and a slight improvement in heat transfer coefficient is observed over the pure water value. The binary diffusion effects are related to a volatility parameter, V1. The heat transfer coefficient does not degrade in the region where V1 < 0.03, and the surface tension does not change appreciably compared to pure water value. This points to the possibility that the changes in contact angle and wetting characteristics play an important role in the pool boiling heat transfer.


Author(s):  
Hang Jin Jo ◽  
Hyungmo Kim ◽  
Ho Seon Ahn ◽  
Seontae Kim ◽  
Soon Ho Kang ◽  
...  

Many pool boiling experiments to enhance the nucleate boiling condition have been conducted and could get brilliant and challengeable results. A consensus was that CHF and heat transfer were affected by a modified heating surface. One of the efforts was the nanofluids experiments, and they have exhibited an incredible enhancement of CHF when nanofluids have been used as a working fluid in pool boiling. The results also have showed clearly that such large CHF enhancement came from the deposition of nanoparticles on the heating surface changing the surface condition. The surface covered by oxidized metal nanoparticles has a high wettability, and so it affects CHF. The fact that the wettability effect is significant to the enhancement of CHF is also supported by other kinds of boiling experiments. In addition, many researchers reported that wettability enhances not only CHF but also nucleate boiling heat transfer coefficient. In this regard, the excellent boiling performance (a high CHF and a high heat transfer coefficient) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. For finding the optimized condition, we design the special heaters to examine how two materials, which have different wettabilities, affect the boiling phenomena. The special heaters have hydrophobic dots on the silicon surface. The hydrophobic dots lead to an early bubble inception. The bubble interface is bounded on the material boundary. The peculiar teflon(AF1600) is used as the hydrophobic material. The contact angle of the heating surface which is made by teflon is 120° to water at the room temperature. The contact angle of the silicon surface is 60° at the room temperature. The experiments using the micro hydrophobic dots and milli hydrophobic dot are performed, and the results are compared with the reference surface.


Author(s):  
Maritza Ruiz ◽  
Claire M. Kunkle ◽  
Jorge Padilla ◽  
Van P. Carey

This study presents an experimental exploration of flow boiling heat transfer in a spiraling radial inflow microchannel heat sink. The effect of surface wettability, fluid subcooling levels, and mass fluxes are considered in this type of heat sink for use in applications with high fluxes up to 300 W/cm2. The design of the heat sink provides an inward radial swirl flow between parallel, coaxial disks that form a microchannel of 300 μm and 1 cm radius with a single inlet and a single outlet. The channel is heated on one side through a copper conducting surface, while the opposite side is essentially adiabatic to simulate a heat sink scenario for electronics cooling. Flow boiling heat transfer and pressure drop data were obtained for this heat sink device using water at near atmospheric pressure as the working fluid for inlet subcooling levels from 20 to 81°C and mean mass flux levels ranging from 184 to 716 kg/m2s. To explore the effects of varying surface wetting, experiments were conducted with two different heated surfaces. One was a clean, machined copper surface with water equilibrium contact angles in the range of 14–40°, typical of common metal surfaces. The other was a surface coated with zinc oxide nanostructures that are superhydrophilic with equilibrium contact angles measured below 10°. During boiling, increased wettability resulted in quicker rewetting and smaller bubble departure diameter as indicated by reduced temperature oscillations during boiling and achieving higher maximum heat flux without dryout. Reducing inlet subcooling levels was also found to reduce the magnitude of oscillations in the oscillatory boiling regime. The highest heat transfer coefficients were seen in fully developed boiling with low subcooling levels as a result of heat transfer being dominated by nucleate boiling. The highest heat fluxes achieved were during partial subcooled flow boiling at 300 W/cm2 with an average surface temperature of 134 °C and requiring a pumping power to heat rate ratio of 0.01%. The hydrophilic surface retained wettability after a series of boiling tests. Recommendations for use of this heat sink design in high flux applications is also discussed.


Sign in / Sign up

Export Citation Format

Share Document