Experimental Verification of a Prediction Model for Pool Boiling Enhanced by the Electrohydrodynamic Effect and Surface Wettability

2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Ichiro Kano ◽  
Naoki Okamoto

Enhancing of boiling heat transfer by combining the electrohydrodynamic (EHD) effect and surface wettability has been shown to remove the high heat fluxes from electrical devices such as laser diodes, light emitting diodes, and central processing units. However, this phenomenon is not well understood. Our previous studies on the critical heat flux (CHF) of pool boiling have shown that CHF greatly increases with the application of an electric field and that the wall temperature can be decreased to a level with the safe operation of the electrical devices by using a low contact angle with the boiling surface. To verify the earlier prediction model, CHF enhancement by changing the contact angle with the boiling surface and by the application of an electric field was investigated. A fluorinated dielectric liquid (Asahi Glass Co. Ltd, Tokyo, Japan, AE-3000) was selected as the working fluid. To allow the contact angle between the boiling surface and the dielectric liquid to be changed, several different materials (Cu, Cr, NiB, Sn) and a surface coated with a mixture of 1.5 and 5 μm diamond particles were used as boiling surfaces. The CHFs at different contact angles were 20.5–26.9 W/cm2, corresponding to 95–125% of that for a polished Cu surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the microstructured surface (the mixture of 1.5 μm and 5 μm diamond particles), a CHF of 99 W/cm2 at a superheat of 33.5 K was obtained. Based on this experimental evidence, we normalized the CHF and contact angle using our previously developed hydrodynamic instability model and semi-empirical model derived from the interfacial area density close to the boiling surface. This procedure allowed us to develop a general model that predicted CHF well, including the CHF for the de-ionized (DI) water.

Author(s):  
Ichiro Kano ◽  
Takahiro Sato ◽  
Naoki Okamoto

Boiling heat transfer enhancement via compound effect of Electro-Hydro-Dynamic (EHD) and contact angle has been experimentally and analytically investigated. A fluorinated dielectric liquid (Asahi Glass Co. Ltd, AE-3000) was selected as the working fluid. Pool boiling heat transfer in the saturated liquid was measured at atmospheric pressure. In order to change the contact angle between the boiling surface and the dielectric liquid, the different materials Cu, Cr, NiB, Sn, and mixture of 5 and 1.5 micro meter diamond particles were electrically deposited on a boiling surface. The critical heat flux (CHF) for different contact angles showed 20.5 ∼ 26.9 W/cm2 which was −7 ∼ 25 % of that for a non-coated Cu surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the micro structured surface (the mixture of 5 and 1.5 micro meter particles), a CHF of 99 W/cm2 at a superheat of 33.5 K was obtained. The previous theoretical equation of pool boiling predicted the CHF with the electric field and without the electrode.


Author(s):  
Alexandru Herescu ◽  
Jeffrey S. Allen

The viscous deposition of a liquid film on the inside of a capillary has been experimentally investigated with a focus on the relationship between the film thickness and surface wettability. With distilled water as a working fluid tests were run in a 622 microns diameter glass tube with contact angles of 30° and 105°, respectively. In the first set of experiments the tube was uncoated while in the second set a fluoropolymer coating was applied to increase the contact angle. A film thickness dependence with the contact angle θ (surface wettability) as well as the Capillary number in the form hR ∼ Ca2/3/cosθ is inferred from scaling arguments. For partial wetting it may explain the existence of a thicker film for nonzero contact angle. It was further found that the non-wetting case of 105° contact angle deviates significantly from the existing theories, the film thickness presenting a weak dependence with the Capillary number. This deviation as well as the apparent non-uniqueness of the solution is thought to be caused by the film instability (rupture) observed during the tests. The thickness of the deposited film as a function of the Capillary number was estimated from the liquid mass exiting the capillary and the gas-liquid interface (meniscus) velocity, and compared to Bretherton’s data and a correlation proposed by Quere. The film thickness measurements as well as the meniscus velocity were determined with the aid of a Photron high speed camera with 10000 frames per second sampling capability coupled with a Nikon TE-2000 inverted microscope and a Precisa electronic balance.


2021 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Lukman Hakim ◽  
Irsandi Dwi Oka Kurniawan ◽  
Ellya Indahyanti ◽  
Irwansyah Putra Pradana

The underlying principle of surface wettability has obtained great attentions for the development of novel functional surfaces. Molecular dynamics simulations has been widely utilized to obtain molecular-level details of surface wettability that is commonly quantified in term of contact angle of a liquid droplet on the surface. In this work, the sensitivity of contact angle calculation at various degrees of surface hydrophilicity to the adopted potential models of water: SPC/E, TIP4P, and TIP5P, is investigated. The simulation cell consists of a water droplet on a structureless surface whose hydrophilicity is modified by introducing a scaling factor to the water-surface interaction parameter. The simulation shows that the differences in contact angle described by the potential models are systematic and become more visible with the increase of the surface hydrophilicity. An alternative method to compute a contact angle based on the height of center-of-mass of the droplet is also evaluated, and the resulting contact angles are generally larger than those determined from the liquid-gas interfacial line.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ho Seon Ahn ◽  
Joonwon Kim ◽  
Moo Hwan Kim

Dynamic wetting behaviors of water droplet on the modified surface were investigated experimentally. Dynamic contact angles were measured as a characterization method to explain the extraordinary pool boiling critical heat flux (CHF) enhancement on the zirconium surface by anodic oxidation modification. The sample surface is rectangular zirconium alloy plates (20 × 25 × 0.7 mm), and 12 μl of deionized water droplets were fallen from 40 mm of height over the surface. Dynamic wetting movement of water on the surface showed different characteristics depending on static contact angle (49.3 deg–0 deg) and surface temperature (120 °C–280 °C). Compared with bare surface, wettable and spreading surface had no-receding contact angle jump and seemed stable evaporating meniscus of liquid droplet in dynamic wetting condition on hot surface. This phenomenon could be explained by the interaction between the evaporation recoil and the surface tension forces. The surface tension force increased by micro/nanostructure of the modified zirconium surface suppresses the vapor recoil force by evaporation which makes the water layer unstable on the heated surface. Thus, such increased surface force could sustain the water layer stable in pool boiling CHF condition so that the extraordinary CHF enhancement could be possible.


Author(s):  
Wangcun Jia ◽  
Vijay K. Dhir

Contact angle is a critical parameter needed in the mechanistic models for the prediction of flow boiling heat transfer. In this paper, variations of upstream and downstream contact angles for a single vapor bubble in flow boiling on horizontal and vertical surfaces were investigated experimentally. The nucleation site is a well-characterized cavity, which was etched on a highly polished silicon wafer surface using micro-fabrication techniques. Water at one atmosphere pressure was used as the working fluid. Photographic images of the bubble were recorded during its inception, growth and liftoff by using high-speed video system and analyzed by an image-processing program. The results provide clean data on the dependence of upstream and downstream contact angles on surface orientation and flow velocity.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 386
Author(s):  
Bangfu Wang ◽  
Yongkang Zhang ◽  
Juan Song ◽  
Zhongwang Wang

This study presents the contact angle prediction model of a trapezoidal groove structure based on the laser irradiation on polymethyl methacrylate (PMMA). The trapezoidal groove structure was designed and proposed according to the characteristics of a femtosecond laser. First, the complete wetting model and incomplete wetting model which were compatible with the characteristics of the laser mechanism were constructed based on the Gibbs free energy and the structural parameters of the trapezoidal groove structure. Then, based on the contact angle prediction models constructed, the samples were divided into two groups according to the designed structural parameters, and the experimental investigations were carried out. The result demonstrated that the incomplete wetting prediction model was more in line with the actual situation. The convex width and the top edge length of spacing of the trapezoidal groove structure both affected the contact angle prediction results. From both the experimental contact angles and the contact angles predicted by the incomplete wetting model, it could be known that the contact angle reached 138.09° when the ratio of the convex width to the top edge length of spacing was 0.25, indicating that the smaller the ratio of the convex width to the top edge length of spacing, the better the hydrophobicity of PMMA.


Author(s):  
Tsukasa Hayashi ◽  
Tatsuya Hazuku ◽  
Tomoji Takamasa ◽  
Kenrou Takamori

This paper presents an experimental study of surface wettability on a stainless plate in a high-temperature, high-pressure environment. Using a pressure vessel, we measured contact angles of water droplets at temperatures from 20 to 300°C and a constant pressure of 15 MPa, as an indicator of macroscopic surface wettability. Measured contact angles decreased with temperature below 250°C, clustering around a straight line at temperatures below 120°C and around another line in the range from 120 to 250°C. At temperatures above 250°C, on the other hand, the contact angles remained constant, independent of temperature, and contrary to the existing theoretical model, no highly hydrophilic condition or null contact angle condition was achieved.


2017 ◽  
Vol 28 (11) ◽  
pp. 1750136 ◽  
Author(s):  
Qin Lou ◽  
Chenqiang Zang ◽  
Mo Yang ◽  
Hongtao Xu

In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.


Author(s):  
Hang Jin Jo ◽  
Hyungmo Kim ◽  
Ho Seon Ahn ◽  
Seontae Kim ◽  
Soon Ho Kang ◽  
...  

Many pool boiling experiments to enhance the nucleate boiling condition have been conducted and could get brilliant and challengeable results. A consensus was that CHF and heat transfer were affected by a modified heating surface. One of the efforts was the nanofluids experiments, and they have exhibited an incredible enhancement of CHF when nanofluids have been used as a working fluid in pool boiling. The results also have showed clearly that such large CHF enhancement came from the deposition of nanoparticles on the heating surface changing the surface condition. The surface covered by oxidized metal nanoparticles has a high wettability, and so it affects CHF. The fact that the wettability effect is significant to the enhancement of CHF is also supported by other kinds of boiling experiments. In addition, many researchers reported that wettability enhances not only CHF but also nucleate boiling heat transfer coefficient. In this regard, the excellent boiling performance (a high CHF and a high heat transfer coefficient) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. For finding the optimized condition, we design the special heaters to examine how two materials, which have different wettabilities, affect the boiling phenomena. The special heaters have hydrophobic dots on the silicon surface. The hydrophobic dots lead to an early bubble inception. The bubble interface is bounded on the material boundary. The peculiar teflon(AF1600) is used as the hydrophobic material. The contact angle of the heating surface which is made by teflon is 120° to water at the room temperature. The contact angle of the silicon surface is 60° at the room temperature. The experiments using the micro hydrophobic dots and milli hydrophobic dot are performed, and the results are compared with the reference surface.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2138
Author(s):  
Sayantan Mukherjee ◽  
Naser Ali ◽  
Nawaf F. Aljuwayhel ◽  
Purna C. Mishra ◽  
Swarnendu Sen ◽  
...  

Non-metallic oxide nanofluids have recently attracted interest in pool boiling heat transfer (PBHT) studies. Research work on carbon and silica-based nanofluids is now being reported frequently by scholars. The majority of these research studies showed improvement in PBHT performance. The present study reports an investigation on the PBHT characteristics and performance of water-based silica nanofluids in the nucleate boiling region. Sonication-aided stable silica nanofluids with 0.0001, 0.001, 0.01, and 0.1 particle concentrations were prepared. The stability of nanofluids was detected and confirmed via visible light absorbance and zeta potential analyses. The PBHT performance of nanofluids was examined in a customized boiling pool with a flat heating surface. The boiling characteristics, pool boiling heat transfer coefficient (PBHTC), and critical heat flux (CHF) were analyzed. The effects of surface wettability, contact angle, and surface roughness on heat transfer performance were investigated. Bubble diameter and bubble departure frequency were estimated using experimental results. PBHTC and CHF of water have shown an increase due to the nanoparticle inclusion, where they have reached a maximum improvement of ≈1.33 times over that of the base fluid. The surface wettability of nanofluids was also enhanced due to a decrease in boiling surface contact angle from 74.1° to 48.5°. The roughness of the boiling surface was reduced up to 1.5 times compared to the base fluid, which was due to the nanoparticle deposition on the boiling surface. Such deposition reduces the active nucleation sites and increases the thermal resistance between the boiling surface and bulk fluid layer. The presence of the dispersed nanoparticles caused a lower bubble departure frequency by 2.17% and an increase in bubble diameter by 4.48%, which vigorously affects the pool boiling performance.


Sign in / Sign up

Export Citation Format

Share Document