Experimental Study of Boiling Phenomena by Micro/Milli Hydrophobic Dot on the Silicon Surface in Pool Boiling

Author(s):  
Hang Jin Jo ◽  
Hyungmo Kim ◽  
Ho Seon Ahn ◽  
Seontae Kim ◽  
Soon Ho Kang ◽  
...  

Many pool boiling experiments to enhance the nucleate boiling condition have been conducted and could get brilliant and challengeable results. A consensus was that CHF and heat transfer were affected by a modified heating surface. One of the efforts was the nanofluids experiments, and they have exhibited an incredible enhancement of CHF when nanofluids have been used as a working fluid in pool boiling. The results also have showed clearly that such large CHF enhancement came from the deposition of nanoparticles on the heating surface changing the surface condition. The surface covered by oxidized metal nanoparticles has a high wettability, and so it affects CHF. The fact that the wettability effect is significant to the enhancement of CHF is also supported by other kinds of boiling experiments. In addition, many researchers reported that wettability enhances not only CHF but also nucleate boiling heat transfer coefficient. In this regard, the excellent boiling performance (a high CHF and a high heat transfer coefficient) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. For finding the optimized condition, we design the special heaters to examine how two materials, which have different wettabilities, affect the boiling phenomena. The special heaters have hydrophobic dots on the silicon surface. The hydrophobic dots lead to an early bubble inception. The bubble interface is bounded on the material boundary. The peculiar teflon(AF1600) is used as the hydrophobic material. The contact angle of the heating surface which is made by teflon is 120° to water at the room temperature. The contact angle of the silicon surface is 60° at the room temperature. The experiments using the micro hydrophobic dots and milli hydrophobic dot are performed, and the results are compared with the reference surface.

Author(s):  
Hongbin He ◽  
Biao Shen ◽  
Sumitomo Hidaka ◽  
Koji Takahashi ◽  
Yasuyuki Takata

Heat transfer characteristic of a closed two-phase thermosyphon with enhanced boiling surface is studied and compared with that of a copper mirror surface. Two-phase cooling improves heat transfer coefficient (HTC) a lot compared to single-phase liquid cooling. The evaporator surfaces, coated with a pattern of hydrophobic circle spots (non-electroplating Ni-PTFE, 0.5∼2 mm in diameter and 1.5–3 mm in pitch) on Cu substrates, achieve very high heat transfer coefficient and lower the incipience temperature overshoot using water as the working fluid. Sub-atmospheric boiling on the hydrophobic spot-coated surface shows a much better heat transfer performance. Tests with heat loads (30 W to 260 W) reveals the coated surfaces enhance nucleate boiling performance by increasing the bubbles nucleation sites density. Hydrophobic circle spots coated surface with diameter 1 mm, pitch 1.5 mm achieves the maximal heat transfer enhancement with the minimum boiling thermal resistance as low as 0.03 K/W. The comparison of three evaporator surfaces with same spot parameters but different coating materials is carried out experimentally. Ni-PTFE coated surface with immersion method performs the optimal performance of the thermosyphon.


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhibo Zhang ◽  
Huai-En Hsieh ◽  
Yuan Gao ◽  
Shiqi Wang ◽  
Jia Gao ◽  
...  

Abstract In this study, the pool boiling performance of oxide nanofluid was investigated, the heating surface is a 5 × 30 mm stainless steel heating surface. Three kinds of nanofluids were selected to explore their critical heat flux (CHF) and heat transfer coefficient (HTC), which were TiO2, SiO2, Al2O3. We observed that these nanofluids enhanced CHF compared to R·O water, and Al2O3 case has the most significant enhancement (up to 66.7%), furthermore, the HTC was also enhanced. The number of bubbles in nanofluid case was relatively less than that in R·O water case, but the bubbles were much larger. The heating surface was characterized and it was found that there were nano-particles deposited, and surface roughness decreased. The wettability also decreased with the increase in CHF.


Author(s):  
T. S. Mogaji ◽  
O. A. Sogbesan ◽  
Tien-Chien Jen

Abstract This study presents numerical investigation results of heat flux effect on pool boiling heat transfer enhancement during nucleate boiling heat transfer of water. The simulation was performed for five different heated surfaces such as: brass, copper, mild steel, stainless steel and aluminum using ANSYS simulation software at 1 atmospheric pressure. The samples were heated in a domain developed for bubble growth during nucleate boiling process under the same operational condition of applied heat flux ranged from 100 to 1000 kW/m2 and their corresponding heat transfer coefficient was obtained numerically. Obtained experimental data of other authors from the open literature result is in close agreement with the simulated data, thus confirming the validity of the CFD simulation method used in this study. It is found that heat transfer coefficient increases with increasing heat flux. The results revealed that in comparison to other materials tested, better heat transfer performance up to 38.5% and 7.11% is observed for aluminum and brass at lower superheated temperature difference conditions of 6.96K and 14.01K respectively. This behavior indicates better bubble development and detachment capability of these heating surface materials and could be used in improving the performance of thermal devices toward producing compact and miniaturized equipment.


2003 ◽  
Author(s):  
Ahmed ElGafy ◽  
Khalid Lafdi

An experimental study is performed to investigate and predict the influence of the heating element shape on nucleate pool boiling heat transfer from vertical cylindrical heating elements. An experimental apparatus test is designed and fabricated for this purpose, while water is utilized as the working fluid. Five vertical cylindrical heating elements with different shapes are used. The average heat transfer coefficient is calculated for each case and a shape factor, which includes the heating element geometry, is introduced for each heating element. An empirical correlation is obtained to relate the mean heat transfer coefficient with the heat flux and shape factor. Another correlation is obtained to relate the mean heat transfer coefficient with the saturation temperature difference and the shape factor. A comparative study is performed between the enhancement ratio and both the area ratio and shape factor ratio.


2016 ◽  
Vol 20 (suppl. 1) ◽  
pp. 113-123 ◽  
Author(s):  
Milada Pezo ◽  
Vladimir Stevanovic

This paper presents CFD (Computational Fluid Dynamics) approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface.


Author(s):  
Jack L. Parker ◽  
Mohamed S. El-Genk

Saturation pool boiling experiments of FC-72 liquid on a flat, porous graphite and smooth copper surfaces measuring 10 × 10 mm investigated the effect of surface orientation on nucleate boiling and Critical Heat Flux (CHF). The inclination angle of the surface increased from 0° (upward-facing) to 60°, 90°, 120°, 150°, and 180° (downward facing). Results demonstrated significant increases in the nucleate boiling heat transfer coefficient and CHF on porous graphite, compared to those on copper. At low surface superheats, increasing the inclination angle increases the nucleate boiling heat transfer coefficient, which decreases with increased inclination angle at high surface superheats. These results and the measured decreases of CHF with increased inclination angle are consistent with those reported earlier by other investigators for dielectric and non-dielectric liquids. On smooth surfaces and micro-porous coatings, the reported fractional decreases in CHF with increased inclination angle are almost identical, but markedly larger than those measured in this work on porous graphite. On these surfaces the reported CHF in the downward-facing position (180° inclination) is ∼10–20% of that in the upward-facing position (0° inclination), compared to ∼53.3% on porous graphite. The CHF values of FC-72 liquid on porous graphite, which also decreased with increased inclination angle, are correlated using the general form suggested by Kutatelatze (1961) to within ± 5% of the experimental data.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1566 ◽  
Author(s):  
M. M. Sarafraz ◽  
M. S. Shadloo ◽  
Zhe Tian ◽  
Iskander Tlili ◽  
Tawfeeq Abdullah Alkanhal ◽  
...  

Formation of bubbles in water inside an annulus pipe in a flow boiling regime was experimentally investigated. The effect of various variables, such as total dissolved solid materials (TDS) in terms of mass fraction, flow rate of water, and applied heat flux (HF) on the heat transfer coefficient (HTC) and bubble behavior of water, was experimentally investigated. A regression formula was fitted to estimate the average bubble diameter at various TDS values, with accuracy of <4.1% up to heat flux of 90 kW/m2. Results show that the presence of TDS materials can increase the contact angle of bubble and bubble diameter, and also promotes the HTC value of the system. However, flow rate of water suppressed bubble generation, and increased the heat transfer coefficient due to the renewal of the thermal boundary layer around the boiling surface. Likewise, it was identified that forced convective and nucleate boiling heat transfer mechanisms contribute to the flow of boiling water, and heat flux is a key parameter in determining the mechanism of heat transfer. In the present study, heat flux of 15 kW/m2 at 50 °C was the heat flux in which onset of nucleate boiling was identified inside the annulus pipe. The contact angle of water at TDS values of 300 mg/L and 1200 mg/L was 74° and 124°, respectively, showing the improvement in heat transfer characteristics of water due to the presence of TDS materials.


2016 ◽  
Vol 11 (3) ◽  
pp. 46-52
Author(s):  
Nadezhda Mezentseva ◽  
Ivan Mezentsev ◽  
Valentin Mukhin

Despite numerous empirical relationships, currently there is no sufficiently reliable and physically reasonable methodology for calculating the heat transfer coefficient at boiling the zeotropic binary blends. The main reason is the complexity of the boiling process mechanism. Zeotropic blends have the non-isothermal phase transition or the temperature glide. To perform the analysis, the results of experimental work on boiling the zeotropic blends inside the horizontal smooth tubes were processed. The studies were carried out with the horizontal smooth steel and copper tubes; the mass velocities were varied within 50–583 kg/m2 s; the specific heat flux was varied from 1 to 45 kW/m2 . The experimental data, corresponding to the region of nucleate boiling, were compared with the calculated dependencies. The dependences corresponding to pool boiling were also analyzed. It was proposed to determine the heat transfer coefficient by Gogonin’s dependence (2006); this coincides well with the experimental data. This dependence takes into account the effect of wall thermal properties and its roughness on heat transfer. Moreover, it was found out that, in contrast to pool boiling, for the forced vapor-liquid flow in pipes at nucleate boiling, the diffusion processes are not important.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Richard Furberg ◽  
Björn Palm ◽  
Shanghua Li ◽  
Muhammet Toprak ◽  
Mamoun Muhammed

Presented research is an experimental study of the performance of a standard plate heat exchanger evaporator, both with and without a novel nano- and microporous copper structure, used to enhance the boiling heat transfer mechanism in the refrigerant channel. Various distance frames in the refrigerant channel were also employed to study the influence of the refrigerant mass flux on two-phase flow heat transfer. The tests were conducted at heat fluxes ranging between 4.5 kW/m2 and 17 kW/m2 with 134a as refrigerant. Pool boiling tests of the enhancement structure, under similar conditions and at various surface inclination angles, were also performed for reasons of comparison. The plate heat exchanger with the enhancement structure displayed up to ten times enhanced heat transfer coefficient in the refrigerant channel, resulting in an improvement in the overall heat transfer coefficient with over 100%. This significant boiling enhancement is in agreement with previous pool boiling experiments and confirms that the enhancement structure may be used to enhance the performance of plate heat exchangers. A simple superposition model was used to evaluate the results, and it was found that, primarily, the convective boiling mechanism was affected by the distance frames in the standard heat exchanger. On the other hand, with the enhanced boiling structure, variations in hydraulic diameter in the refrigerant channel caused a significant change in the nucleate boiling mechanism, which accounted for the largest effect on the heat transfer performance.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Yeonghwan Kim ◽  
Dong Hwan Shin ◽  
Jin Sub Kim ◽  
Seung M. You ◽  
Jungho Lee

Abstract Two-phase flow inside the two-phase closed thermosyphon (TPCT) including evaporator, adiabatic and condenser sections was visually investigated in order to qualitatively analyze the complicated behaviors of both liquid film and vapor flows simultaneously. The semi-cylindrical channel which is 650 mm long was formed in the long copper block and the flat face of the channel was covered with a flat Pyrex glass for visual observation. The inner diameter of the semi-cylindrical channel was 25 mm and distilled water was used as a working fluid. The filling ratio of the thermosyphon was fixed at 0.5 and the inclination angle was set to 60º. As the heat flux increases, nucleate boiling becomes dominant and the bursting motion starts to begin in the liquid pool at the evaporator section. The bursting liquid flow reaches the condenser section and changes the condensation regime from dropwise to filmwise by flooding the condenser wall, which results in the decrease of condensation heat transfer coefficient. In addition, the vigorous vapor generation which occurs in the liquid pool at the evaporator section disturbs the circulation of the condensate film from the condenser to the evaporator section. As a result, the local dry-out occurs on the evaporator section with increasing heat flux, so the boiling heat transfer coefficient is decreased. [This research was supported by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2018H1D3A2000929).]


Sign in / Sign up

Export Citation Format

Share Document