Measurement and Analysis of Bubble Behavior in Subcooled Nucleate Boiling Flow Field With High Fidelity Imaging System

Author(s):  
Wen Wu ◽  
Barclay G. Jones ◽  
Ty A. Newell

To date, more than twenty PWRs have been affected by axial offset anomaly (AOA) or crud-induced power shift (CIPS), an unexpected deviation in the core axial power distribution from the predicted curve during operation. AOA is a current major consideration for reactors operating at increased power levels and is becoming immediate threat to nuclear power’s competitiveness in the market [1]. Despite much effort focusing on this topic, a comprehensive understanding is far from being developed. However, previous research indicates that a close connection exists between subcooled nucleate boiling occurring in core region and the formation of crud, which directly results in AOA phenomena. It is well established that deposition is greater, and sometimes much greater, on heated than on unheated surfaces. [2] A number of researchers have suggested that boiling promotes deposition, and several observed increased deposition in the subcooled boiling region [2]. Limited detailed information is available on the interaction between heat and mass transfer in subcooled nucleate boiling (SNB) flow. It is speculated that direct prediction of the AOA from SNB is difficult. Moreover, bubbles formed in SNB region play an important role in helping the formation of crud. Therefore, we are encouraged to get a better understanding of SNB phenomena and the behavior of the bubbles in SNB. This research examines bubble behavior under SNB condition from the dynamic point of view, using a high fidelity digital imaging apparatus. Freon R-134a is chosen as a simulant fluid due to its merit of having smaller surface tension and lower boiling temperature. The apparatus is operated at “reduced” pressure. Series of images at frame rates up to 4000 frames/s were obtained, showing different characteristics of bubble behavior with varying experimental parameters e.g. flow velocity, fluid subcooled level, etc. Analyses that combine the experimental results with analytical result on flow field in velocity boundary layer are considered. A tentative suggestion is that a rolling movement of a bubble accompanies its sliding along the heating surface in the flow channel. Numerical computations using FLUENT v5.5 are performed to support this conclusion.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1348
Author(s):  
Pamela Miśkiewicz ◽  
Magdalena Tokarska ◽  
Iwona Frydrych ◽  
Marcin Makówka

Innovative textile materials can be obtained by depositing different coatings. To improve the thermal properties of textiles, aluminum and zirconium (IV) oxides were deposited on the Nomex® fabric, basalt fabric, and cotton fabric with flame-retardant finishing using the magnetron sputtering method. An assessment of coating quality was conducted. Evenly coated fabric ensures that there are no places on the sample surface where the values of thermal parameters such as resistance to contact heat and radiant heat deviate significantly from the specified ones. Energy-dispersive spectroscopy was used for the analysis of modified fabric surfaces. Non-contact digital color imaging system DigiEye was also used. The criterion allowing one to compare surfaces and find which surface is more evenly coated was proposed. The best fabrics from the point of view of coating quality were basalt and cotton fabrics coated with aluminum as well as basalt fabric coated with zirconia. The probability of occurrence of places on the indicated sample surfaces where the values of thermal parameters (i.e., resistance to contact heat and radiant heat) deviated significantly from the specified ones was smaller for Nomex® and cotton fabrics coated with zirconia and Nomex® fabric coated with aluminum.


Author(s):  
David O. Rodriguez-Duarte ◽  
Jorge A. Tobon Vasquez ◽  
Rosa Scapaticci ◽  
Lorenzo Crocco ◽  
Francesca Vipiana

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1527
Author(s):  
Jakob Hinum-Wagner ◽  
David Kuhness ◽  
Gerald Kothleitner ◽  
Robert Winkler ◽  
Harald Plank

High-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects. In this study, we approach that challenge by reducing the substrate temperatures with a homemade Peltier stage and investigate the effects on Pt based 3D deposits in a temperature range of 5–30 °C. The findings reveal a volume growth rate boost up to a factor of 5.6, while the shape fidelity in 3D space is maintained. From a materials point of view, the internal nanogranular composition is practically unaffected down to 10 °C, followed by a slight grain size increase for even lower temperatures. The study is complemented by a comprehensive discussion about the growth mechanism for a more general picture. The combined findings demonstrate that FEBID on low substrate temperatures is not only much faster, but practically free of drawbacks during high fidelity 3D nanofabrication.


1998 ◽  
Vol 120 (3) ◽  
pp. 641-653 ◽  
Author(s):  
G. F. Naterer ◽  
W. Hendradjit ◽  
K. J. Ahn ◽  
J. E. S. Venart

Boiling heat transfer from inclined surfaces is examined and an analytical model of bubble growth and nucleate boiling is presented. The model predicts the average heat flux during nucleate boiling by considering alternating near-wall liquid and vapor periods. It expresses the heat flux in terms of the bubble departure diameter, frequency and duration of contact with the heating surface. Experiments were conducted over a wide range of upward and downward-facing surface orientations and the results were compared to model predictions. More active microlayer agitation and mixing along the surface as well as more frequent bubble sweeps along the heating surface provide the key reasons for more effective heat transfer with downward facing surfaces as compared to upward facing cases. Additional aspects of the role of surface inclination on boiling dynamics are quantified and discussed.


Author(s):  
Chien-Yuh Yang ◽  
Chien-Fu Liu

Numerous researches have been developed for pool boiling on microporous coated surface in the past decade. The nucleate boiling heat transfer was found to be increased by up to 4.5 times than that on uncoated surface. Recently, the two-phase micro heat exchangers have been considered for high flux electronic devices cooling. The enhancement techniques for improving the nucleate boiling heat transfer performance in the micro heat exchangers have gotten more importance. Previous studies of microporous coatings, however, have been restricted to boiling in unconfined space. No studies have been made on the feasibility of using microporous coatings for enhancing boiling in confined spaces. This study provides an experimental observation of the vapor generation and leaving processes on microporous coatings surface in a 1-mm confined space. It would be helpful for understanding the mechanism of boiling heat transfer and improving the design of two-phase micro heat exchangers. Aluminum particles of average diameter 20 μm were mixed with a binder and a carrier to develop a 150 μm thickness boiling enhancement paint on a 3.0 cm by 3.0 cm copper heating surface. The heating surface was covered by a thin glass plate with a 1 mm spacer to form a 1 mm vertical narrow space for the test section. The boiling phenomenon was recorded by a high speed camera. In addition to the three boiling regimes observed by Bonjour and Lallemand [1], i.e., isolated deformed bubbles, coalesced bubbles and partial dryout at low, moderate and high heat fluxes respectively in unconfined space, a suction and blowing process was observed at the highest heat flux condition. Owing to the space confinement, liquid was sucked and vapor was expelled periodically during the bubble generation process. This mechanism significantly enhanced the boiling heat transfer performance in confined space.


2005 ◽  
Author(s):  
X. D. Wang ◽  
G. Lu ◽  
X. F. Peng ◽  
B. X. Wang

A visual study was conducted to investigate the evaporation and nucleate boiling of a water droplet on heated copper, aluminum, or stainless surfaces with temperature ranging from 50°C to 112°C. Using a high-speed video imaging system, the dynamical process of the evaporation of a droplet was recoded to measure the transient variation of its diameter, height, and contact angle. When the contact temperature was lower than the saturation temperature, the evaporation was in film evaporation regime, and the evaporation could be divided into two stages. When the surface temperature was higher than the saturation temperature, the nucleate boiling was observed. The dynamical behavior of nucleation, bubble dynamics droplet were detail observed and discussed. The linear relationships of the average heat flux vs. temperature of the heated surfaces were found to hold for both the film evaporation regime and nucleate boiling regime. The different slopes indicated their heat transfer mechanism was distinct, the heat flux decreased in the nucleate boiling regime more rapidly than in the film evaporation due to the strong interaction between the bubbles.


Author(s):  
Lu Zhang ◽  
David M. Christopher

Bubbles have been observed moving along heated wires during subcooled nucleate boiling as they are driven by Marangoni convection around the bubbles. This paper presents more detailed observations of the vapor bubble interactions and moving bubble behavior during subcooled nucleate boiling on a heated microwire. The experimental results show that moving bubbles coalesce or rebound from other bubbles and that bubbles hop on the wire. These observations show how bubble interactions significantly affect nucleate boiling heat transfer rates and how Marangoni flow plays an important role in microscale nucleate boiling heat transfer mechanisms.


1999 ◽  
Vol 121 (2) ◽  
pp. 365-375 ◽  
Author(s):  
R. J. Benjamin ◽  
A. R. Balakrishnan

A model for nucleate pool boiling heat transfer of binary mixtures has been proposed based on an additive mechanism. The contributing modes of heat transfer are (i) the heat transferred by microlayer evaporation, (ii) the heat transferred by transient conduction during the reformation of the thermal boundary layer, and (iii) the heat transferred by turbulent natural convection. The model takes into account the microroughness of the heating surface which has been defined quantitatively. The model compares satisfactorily with data obtained in the present study and in the literature. These data were obtained on a variety of heating surfaces such as a vertical platinum wire, a horizontal stainless steel tube and flat horizontal aluminium, and stainless steel surfaces (with various surface finishes) thereby demonstrating the validity of the model.


Sign in / Sign up

Export Citation Format

Share Document