A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

Author(s):  
Hiroshi Fukui ◽  
Isao Minatsuki ◽  
Kazuo Ishino

The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry binder) and calcinated. Final polishing of the flange faces established in the entrance nozzles was also satisfactory. Many parts were joinable using new technology (new binder). For this reason, new technology is applicable to manufacture of not only a sulfuric acid decomposer but the instruments in the IS process, or other chemical processes.

Author(s):  
M. A. Alvin

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ∼1425–1760°C (∼2600–3200°F) with pressures of ∼300–625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project and introduces three new technology areas — high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.


Historically the use of new materials in aircraft construction has accounted for the major amount of mass reduction by new technology. The continuation of this role for new materials in aerospace vehicles in the 1990s is reviewed. The materials scientists’ vastly increased ability to synthesize new materials and tailor mechanical and physical properties has created the need for an interdisciplinary approach among aircraft designers and materials scientists in the development of new materials. A system to assess and quantify potential benefits from aims for property improvement is described. Application of this mass-savings methodology to a typical aircraft is presented with the results associated with varying percentage property improvements in strength, stiffness, durability, damage tolerance and density. The need to obtain vastly improved corrosion resistance in magnesium alloys and higher fracture toughness in metal matrix composites is briefly discussed. Trends in high-temperature aluminium-alloy development and property comparisons with titanium are given. Carbon-fibre reinforced resin matrix composites are discussed in terms of failure modes and design allowable strain for thermoset and thermoplastic systems. Cost of current composite structure is compared with that of aluminium and approaches to reduce manufacturing cost of composites are given. General requirements are presented for high-temperature materials for hypersonic and re-usable orbital vehicles. A basic structural integrity plan for emerging materials is outlined that identifies specific technology transition needs and the related tasks that must be accomplished before new materials can be incorporated into aircraft structures.


Author(s):  
Gennadiy Valentinovich Alexeev ◽  
Elena Igorevna Verboloz

The article focuses on the process of intensive mixing of liquid phase in the tin during high-temperature sterilization, i.e. sterilization when temperature of the heat carrier reaches 150-160°C. It has been stated that for intensification of the thermal process during sterilization of tinned fish with liquid filling it is preferable to turn a tin from bottom to top. This operation helps to increase the driving power of the process and to shorten warming time. Besides, high-temperature sterilization carried out according to experimental modes, where the number of tin turnovers is calculated, greatly shortens processing time and improves quality of the product. In this case there is no superheating, all tins are evenly heated. The study results will contribute to equipment modernization and to preserving valuable food qualities.


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Unitemp-HX is a nickel-base material recommended for high temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-91. Producer or source: Universal Cyclops Steel Corporation.


Alloy Digest ◽  
1958 ◽  
Vol 7 (5) ◽  

Abstract REVERE No. 430 is an aluminum bronze having high strength, excellent corrosion resistance, and high resistance to sulfuric acid. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-63. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
2001 ◽  
Vol 50 (11) ◽  

Abstract Titanium shows outstanding resistance to seawater and marine atmospheres. It is also resistant to attack by hot metallic chloride solutions, sodium and potassium hypochlorite, and chlorine dioxide. The metal is resistant to attack by hot nitric acid at concentrations up to 80% and is not attacked by sulfuric acid. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: TI-122. Producer or source: Timet.


2020 ◽  
Author(s):  
Akhilesh Kumar Kondoju ◽  
Revanth Reddy Kontham ◽  
Jinan A. Fiaidhi

<div>A simple stock watcher based on Google Web Toolkit (GWT) as the new technology in the creation of rich AJAX applications using only Java as the programming language, which is later on compiled into pure JavaScript and deployed as a regular web site. The user is able to know and manage stock watcher to be</div><div>updated with the latest changes in stock. We used random data as input as it is a prototype model.</div>


2000 ◽  
Vol 282 (1-2) ◽  
pp. 109-114 ◽  
Author(s):  
Robert P. Jensen ◽  
William E. Luecke ◽  
Nitin P. Padture ◽  
Sheldon M. Wiederhorn

Author(s):  
Changyu Zhou ◽  
Bo Wang ◽  
Zhigang Sun ◽  
Jilin Xue ◽  
Xiaohua He

High temperature pressure pipes are widely used in power stations, nuclear power plants, and petroleum refinery, which always bear combined effects of high temperature, high pressure, and corrosive media, so the local pits are the most common volume defects in pressure pipe. Due to various reasons, the defects usually appear on the internal or external wall of pipe. In this paper, the dimensions of a defect were characterized as three dimensionless factors: relative depth, relative gradient and relative length. The main objects of study were the pipe with an internal pit and pipe with an external pit. Orthogonal array testing of three factors at four different levels was applied to analyze the sequence of the influence of three parameters. In present study, when the maximum principal strain nearby the location of the defects reaches 2%, the corresponding load is defined as the limit load, which is classified as two kinds of load type: limit pressure and limit bending moment. According to this strain criterion and isochronous stress strain data of P91 steel, the limit load of high temperature pipe with a local pit was determined by using ABAQUS. And in the same load condition of the pipe with the same dimensionless factors, the limit load of the internal defected pipe was compared with that of the external defected pipe. The results of this study can provide a reference for safety assessment and structural integrity analysis of high temperature creep pressure pipe with pit defects.


Sign in / Sign up

Export Citation Format

Share Document