Implementation and Validation of Downcomer and Upper Tie Plate CCFL Correlations in a Two-Fluid Code

Author(s):  
Markku Ha¨nninen

At the moment the two-fluid system code APROS has CCFL (Counter Current Flow Limitation) correlations that are designed only for a single pipe or for bundle geometry. In the reactor pressure vessel the downcomer and the upper tie plate of the core are components that call for special CCFL correlations. In the present task the Glaeser CCFL correlations for a downcomer and an upper tie plate have been implemented in the code. The implemented correlations have been validated by calculating several downcomer and upper tie plate test cases of the UPTF (Upper Plenum Test Facility). In the tests the steam flow, the emergency core cooling flows, injection locations and the pressure levels were varied. In the validation the UPTF facility has been modeled with a nodalization, which is normally used in the corresponding calculations. Because the calculation results do not depend merely on the CCFL correlations the new Kutateladze coefficients of the Glaeser correlation had to be specified during the validation. With the selected coefficients, good, slightly conservative results were obtained. In the paper the work done with the correlations and the results of the validation calculations are described.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Chuanxin ◽  
Zhuo Wenbin ◽  
Chen Bingde ◽  
Nie Changhua ◽  
Huang Yanping

Low pressure reactor is a small size advanced reactor with power of 180 MWt, which is under development at Nuclear Power Institute of China. In order to assess the ability and feasibility of passive safety system, several tests have been implemented on the passive safety system (PSS) test facility. During the LOCA and SBO accident, the adequate core cooling is provided by the performance of passive safety system. In addition the best-estimate thermal hydraulic code, CATHARE V2.1, has been assessed against cold leg LOCA test. The calculation results show that CATHARE is in a satisfactory agreement with the test for the steady state and transient test.


Author(s):  
Jia Zhong ◽  
Nan Wang ◽  
Yuquan Li ◽  
Yang Shi

The Advanced Core cooling Mechanism Experiment (ACME) facility is a 1/3 height scale, high pressure, 1/54.3 power scale and 1/94 volume scale simulation of CAP1400 PWR. A series of twenty-one small break loss of coolant accident (SBLOCA) tests were performed at ACME to collect thermal-hydraulic data for computer code assessment and to support the license of CAP1400. The tests included a range of hot-leg or cold-leg break, double ended direct vessel injection (DEDVI) line break, inadvertent ADS actuation and double ended pressure balance line (PBL) break accidents. The purpose of this paper is to describe the test data of the typical SBLOCA, and to analyze the mixing of liquid in Reactor Pressure Vessel (RPV) downcomer. Furthermore, the trend of RPV downcomer temperature and the temperature distribution in RPV downcomer are investigated.


2019 ◽  
Vol 137 ◽  
pp. 01016 ◽  
Author(s):  
Rafał Bryk ◽  
Lars Dennhardt ◽  
Simon Schollenberger

PKL is the only test facility in Europe that replicates the entire primary side and the most important parts of the secondary side of western-type Pressurized Water Reactors (PWR) in the scale of 1:1 in heights. It is also worldwide the only test facility with 4 identical reactor coolant loops arranged symmetrically around the Reactor Pressure Vessel (RPV) for simulation of nonsymmetrical boundary conditions between the reactor loops. Thermal-hydraulic phenomena observed in PWRs are simulated in the PKL test facility for over 40 years. The analyses carried out in these years encompass a large spectrum of accident scenario simulations and corresponding cool-down procedures. The overall goal of the PKL experiments is to show that under accident conditions - even for extreme and highly unlikely assumptions as additional loss of safety systems - the core cooling can be maintained or re-established by automatic or operator- performed procedures and that a severe accident e.g. a core melt-down can be avoided under all circumstances. Another goal of the tests performed in the PKL facility is the provision of data for validation of thermal-hydraulic system codes. This paper presents recent modifications of the PKL facility, applied in order to adapt the facility to the latest western-type designs currently built in the world. The paper discusses also important results obtained in the last years.


Author(s):  
Xu Caihong ◽  
Shi Guobao ◽  
Fan Pu

The Advanced Core-cooling Mechanism Experiment (ACME) is conducted to investigate the performance of passive core-cooling system (PXS) for the advanced CAP1400 Pressurized Water Reactor (PWR). The small-break LOCA experiments conducted at ACME integrated test facility are simulated with a SNERDI modified version of RE-LAP5/MOD3 code. Several typical SBLOCA test cases are simulated and one case (2 inch cold leg break) is presented in this paper. And the predicted results are compared with the test data to assess the performance of the modified code. The calculated results agree reasonably well with the test data.


2021 ◽  
Vol 1 ◽  
pp. 487-496
Author(s):  
Pavan Tejaswi Velivela ◽  
Nikita Letov ◽  
Yuan Liu ◽  
Yaoyao Fiona Zhao

AbstractThis paper investigates the design and development of bio-inspired suture pins that would reduce the insertion force and thereby reducing the pain in the patients. Inspired by kingfisher's beak and porcupine quills, the conceptual design of the suture pin is developed by using a unique ideation methodology that is proposed in this research. The methodology is named as Domain Integrated Design, which involves in classifying bio-inspired structures into various domains. There is little work done on such bio-inspired multifunctional aspect. In this research we have categorized the vast biological functionalities into domains namely, cellular structures, shapes, cross-sections, and surfaces. Multi-functional bio-inspired structures are designed by combining different domains. In this research, the hypothesis is verified by simulating the total deformation of tissue and the needle at the moment of puncture. The results show that the bio-inspired suture pin has a low deformation on the tissue at higher velocities at the puncture point and low deformation in its own structure when an axial force (reaction force) is applied to its tip. This makes the design stiff and thus require less force of insertion.


1981 ◽  
Vol 14 (3) ◽  
pp. 487-518
Author(s):  
Gérald Bernier

The study of social classes in the nineteenth century requires the development of conceptual tools able to explain the impact of the Conquest on the pre-existant social structures in determining transformations of the class structure during the subsequent decades.This article examines the work done on this question by Marxist writers. The author criticizes certain conclusions which have been drawn and which suggest deficiencies at a theoretical level. The objections relate to the marked tendency of these conclusions to perceive the structural effects of the Conquest in terms of the formation of a double-class structure characterized by “ethnic origins.” Specifically, the author challenges the notion of the division itself, as well as the criterion on which the division is based.The author proposes that an analysis centred upon the concepts relating to a problem of the transition and linkage of different modes of production permits a more satisfying interpretation, if accompanied by a certain number of considerations of the “upside” and “downside” of the Conquest. To this end, the argument is based on a characterization of New France in terms of the domination of the relations of production of the feudal type and on an analysis of metropolitan centres with intent to evaluate their level of capitalist development at the moment of their respective colonial penetration in Canada. The results of this approach permit one to posit the existence of a single-class structure, characterized principally by the existence of elements connecting diverse modes and forms of production, whose origin reflects the unequal state of economic development in the two metropolitan centres.The empirical demonstration rests on the census data of 1851–1852 and on the complementary information drawn from the works of historians.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


Author(s):  
Jun Wang ◽  
Yuqiao Fan ◽  
Yapei Zhang ◽  
Xinghe Ni ◽  
Wenxi Tian ◽  
...  

The occurrence of Fukushima has increased the focus on the development of severe accident codes and their applications. As a part of Chinese “National Major Projects,” a module in-vessel degraded analysis code (MIDAC) is currently being developed at Xi’an Jiaotong University. The developing situation of a candling module and relevant calculation for CPR1000 for large break loss of coolant analysis (LOCA) are presented in this paper. The candling module focuses on the melting, moving, and relocation of the melting core materials and necessary thermal hydraulic information. MIDAC’s LOCA accident calculation results of Chinese pressure reactor 1000 (CPR1000) cover the melting mass distribution, peak temperature, and hydrogen generation. The results have been compared with MAAP. Through comparison, the candling module of MIDAC proved to be able to predict the moving trend of the molten material mass relocation in the reactor pressure vessel.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Hiroshi Madokoro ◽  
Alexei Miassoedov ◽  
Thomas Schulenberg

Due to the recent high interest on in-vessel melt retention (IVR), development of detailed thermal and structural analysis tool, which can be used in a core-melt severe accident, is inevitable. Although RELAP/SCDAPSIM is a reactor analysis code, originally developed for U.S. NRC, which is still widely used for severe accident analysis, the modeling of the lower head is rather simple, considering only a homogeneous pool. PECM/S, a thermal structural analysis solver for the reactor pressure vessel (RPV) lower head, has a capability of predicting molten pool heat transfer as well as detailed mechanical behavior including creep, plasticity, and material damage. The boundary condition, however, needs to be given manually and thus the application of the stand-alone PECM/S to reactor analyses is limited. By coupling these codes, the strength of both codes can be fully utilized. Coupled analysis is realized through a message passing interface, OpenMPI. The validation simulations have been performed using LIVE test series and the calculation results are compared not only with the measured values but also with the results of stand-alone RELAP/SCDAPSIM simulations.


Author(s):  
Manabu Yagi ◽  
Hidefumi Araki ◽  
Hisato Tagawa ◽  
Tomomi Koganezawa ◽  
Chihiro Myoren ◽  
...  

A 40 MW-class test facility has been constructed to verify practicability of applying the advanced humid air turbine (AHAT) system to a heavy-duty gas turbine. Verification tests have been carried out from January 2012, and interaction effects between the key components were established. First, water atomization cooling (WAC) was confirmed to contribute to both increased mass flow rate and pressure ratio for the axial-flow compressor. The good agreement between measured and calculated temperatures at the compressor discharge was also confirmed. These results demonstrated the accuracy of the developed prediction model for the WAC. Second, a control method that realized both flame stability and low nitrogen oxides (NOx) emissions was verified. Although the power output and air humidity were lower than the rated values, NOx concentration was about 10 ppm. Finally, a hybrid nozzle cooling system, which utilized both compressor discharged air and humid air, was developed and tested. The metal surface temperatures of the first stage nozzles were measured, and they were kept under the permissible metal temperature. The measured temperatures on the metal surface reasonably corresponded with calculation results.


Sign in / Sign up

Export Citation Format

Share Document