Centrifugal Pump Leak-Free Technology Introduction and Its Applications in EPR Nuclear Power Plant

Author(s):  
Guohui Cong ◽  
Ling Zhang

Environmental protection requirement is more and more critical now, and it increases the request to prevent dangerous liquid to leak outside in nuclear power plant too. Centrifugal pumps are the most important active equipments in nuclear power plant, but there is a shaft clearance between rotor and stator of centrifugal pump. The shaft clearance can lead pumped fluid to the outside, so the environment may be polluted by the leakage. In some critical conditions such as transferring high radioactive fluid in the pump, the leakage shall be totally forbidden. So solutions have to be found to make centrifugal pumps totally leak-free for applications in nuclear power plant. Normally there are three leak-free technologies for centrifugal pumps: mechanical seal with auxiliary system, canned motor and magnetic drive. In this paper, all the three leak-free technologies and some of their applications in EPR 3rd generation PWR nuclear power plants are presented and discussed. The results show that in EPR nuclear power plant, canned motor pumps can be preferably used for strict environmental requirement of leak-free if the pump power and operating conditions are applicable. For other conditions, pumps with double mechanical seal can also be used with additional sealing water system support. For centrifugal pumps with magnetic drive are not so applicable in high pressure condition, and the safety aspect is weaker than canned motor pumps, generally they are not used in EPR nuclear power plant at present.

2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


Author(s):  
Li Li ◽  
Zhang Shengtao ◽  
Xu Zhao ◽  
Du Yu

For PWR, remote shutdown station (RSS) is a redundant control mean to shut down the reactor when main control room (MCR) inhabitation is challenged (e.g. fire, smoke...). Nowadays, due to nuclear power plants control measures were improved with DCS system, a full function DCS RSS was equipped and more essential equipment could be controlled on RSS. Under operating conditions that prohibit nuclear power plant operators to stay in the main control room, the operators should move to RSS and shutdown the reactor to ensure plant safety following <Moving to remote shutdown station when main control room is un-inhabitable operating strategy> (RSS strategy for short) to fallback the plant from power operation to cold shutdown. The original operating strategy by nature circulation is no longer the best choice both for operation safety and economy efficiency, and an optimized new strategy should be raised. Based on the former reason, an optimized operation strategy was raised in this paper. In the optimized strategy, all plant normal standard operation modes were considered as initial conditions, rather than only considering power operation condition in the original one. The fallback mode and fallback strategy for each initial condition was also designed and optimized. To accelerate the depression and heat removal process, a forced circulation operation strategy is adopted when the reactor coolant pumps are available, and less local operation was included by taking advantages of the full function operating measures on RSS. To simplify the whole procedure structure, the operation modules of other general operating procedures are reused. To validate the effectiveness of the optimized operating strategy, a full scope PWR simulation tool was employed to make thermo hydraulic calculation validation of the reactor response and also the remote control station HMI supporting validation. By simulating the original strategy and the optimized one and related analysis, we found that the optimized strategy is effective, and able to be executed based on the remote control station hardware. By executing the optimized strategy, the unit can fall back to the cold shutdown condition safely and a few hours were saved compared with the original strategy. The optimized strategy had already been implemented on real PWR nuclear power plant.


2016 ◽  
Vol 25 (4) ◽  
Author(s):  
Zhenggui Li ◽  
Muyu Li ◽  
Jiarong Zhang ◽  
Bo Li ◽  
Xiaobing Liu ◽  
...  

Author(s):  
Zhou Gengyu ◽  
Liang Shuhua ◽  
Sun Lin ◽  
Lv Feng

The main steam super pipe used in nuclear power plant is an important safety class2 component. There are several nozzles located on it and linked with main steam safety valves. In the past two decades, the hot extrusion forming technology has been widely used to manufacture the super pipe nozzles. Comparing with traditional insert weldolet, the wall thickness of the extruded nozzle is relative small, and the nozzle inner radius is hard to control precisely in the fabrication process. Due to high temperature working condition and complicated loading conditions, the load capacity of the super pipe extruded nozzle has become an issue of concern for manufacturers and users. This paper presents a structural integrity assessment of a super pipe extruded nozzle. The nozzle stresses due to internal pressure and external loads for different operating conditions are obtained by the three-dimensional finite element analysis. The extruded nozzle is evaluated against the RCCM code Subsection C3200 Service Levels O, B and D stress limits for design, upset and faulted conditions. A parametric sensitivity analysis of the extruded nozzle inner radius size is also carried out. In addition, in order to reduce the calculation effort, an efficient calculation method is developed by using the commercial finite element program ANSYS.


2021 ◽  
Vol 151 ◽  
pp. 107874
Author(s):  
Hongxing Lu ◽  
Ming Yang ◽  
Zhihui Xu ◽  
Xinyu Dai ◽  
Quanliu Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document