Consideration of Relationship Between Decommissioning With Digital-Twin and Knowledge Management

Author(s):  
Yasuyoshi Taruta ◽  
Satoshi Yanagihara ◽  
Takashi Hashimoto ◽  
Shigeto Kobayashi ◽  
Yukihiro Iguchi ◽  
...  

Abstract Decommissioning of Nuclear Power Plant is a long-term project during which generations are expected to change. Therefore, it is necessary to appropriately transfer knowledge, technology and skills to the next generation. In recent years, in the world of decommissioning, attempts have been made to apply advanced technologies such as utilization of knowledge management and digital technology. This study describes adaptation in decommissioning from viewpoint of utilizing IT technology called digital twin and aspect of knowledge management.

2021 ◽  
Vol 13 (3) ◽  
pp. 1073
Author(s):  
Bella Zubekhina ◽  
Boris Burakov ◽  
Ekaterina Silanteva ◽  
Yuri Petrov ◽  
Vasiliy Yapaskurt ◽  
...  

Samples of Chernobyl fuel debris, including massive corium and “lava” were collected inside the Chernobyl “Sarcophagus” or “Shelter” in 1990, transported to Leningrad (St. Petersburg) and stored under laboratory conditions for many years. In 2011 aged samples were visually re-examined and it was confirmed that most of them remained intact, although some evidence of self-destruction and chemical alteration were clearly observed. Selected samples of corium and “lava” were affected by static leaching at temperatures of 25, 90 and 150 °C in distilled water. A normalized Pu mass loss (NLPu) from corium samples after 140 days was noted to be 0.5 g/m2 at 25 °C and 1.1 g/m2 at 90 °C. For “lava” samples NLPu was 2.2–2.3 g/m2 at 90 °C for 140 days. The formation of secondary uranyl phases on the surface of corium and “lava” samples altered at 150 °C was confirmed. The results obtained are considered as an important basis for the simulation of fuel debris aging at Fukushima Daiichi nuclear power plant (NPP).


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 754-761 ◽  
Author(s):  
Ede Hertelendi ◽  
György Uchrin ◽  
Peter Ormai

We present results of airborne 14C emission measurements from the Paks PWR nuclear power plant. Long-term release of 14C in the form of carbon dioxide or carbon monoxide and hydrocarbons were simultaneously measured. The results of internal gas-proportional and liquid scintillation counting agree well with theoretical assessments of 14C releases from pressurized water reactors. The mean value of the 14C concentration in discharged air is 130Bqm-3 and the normalized release is equal to 740GBq/GWe · yr. > 95% of 14C released is in the form of hydrocarbons, ca 4% is apportioned to CO2, and <1% to CO. Tree-ring measurements were also made and indicated a minute increase of 14C content in the vicinity of the nuclear power plant.


Author(s):  
Tatiana Grebennikova ◽  
Abbie N Jones ◽  
Clint Alan Sharrad

Irradiated graphite waste management is one of the major challenges of nuclear power-plant decommissioning throughout the world and significantly in the UK, France and Russia where over 85 reactors employed...


Author(s):  
Dong Zheng ◽  
Allen T. Vieira ◽  
Julie M. Jarvis ◽  
George P. Emsurak

The Ultimate Heat Sink (UHS) of a nuclear power plant is a complex cooling water system which serves the plant during normal and accident conditions. For some next generation nuclear plants, the UHS sizing is a major design and licensing analysis task. The analysis involves detailed modeling of the transient heat loads and the selection of worst-case meteorological data for the plant site. The UHS sizing requirements for a representative next generation nuclear power plant are evaluated on a month-to-month basis. This paper assesses the UHS water requirement for each month of year. The UHS analysis for a representative next generation nuclear plant with mechanical draft cooling towers and a water basin is used to determine the maximum evaporation of the basin for the worst-case meteorological data on a month-to-month basis. To size the cooling tower basin, automated methods have been developed which determine the highest evaporative losses from the basin and highest basin temperature over a 30-day design basis accident period. This paper also evaluates the month-to-month basin temperature changes. This assessment is done for a representative next generation nuclear power plant and considers the monthly historical meteorological data over 45 years. The result of this assessment of monthly UHS water requirement is of interest in assessing the margin in the UHS design. This monthly assessment is also useful in demonstrating that the automated methods used to establish the limiting 30-day meteorological condition are indeed accurate. In addition, these results may be useful in helping to plan plant maintenance activities.


Author(s):  
Horst Rothenhöfer ◽  
Andreas Manke

The safety relevant components of nuclear power plant Neckarwestheim 1 — in service since 1976 — have been reviewed and updated for long-term operation (LTO). The actions included hardware retrofits as well as updates of analysis according to the latest state of the scientific and technical knowledge. For large piping such as the steam lines, the established pipes have been retained while the supports have been optimized. All shock absorbers (snubbers) including corresponding inertia have been eliminated resulting in a defined guidance and statically defined displacements. The integrity analyses for the optimized steam lines, including break preclusion, have been validated successfully with comprehensive measurements. The verification has delivered an extra high level of credibility, exceeding the “standard” requirements to achieve fitness for service in long-term operation. Measurement and validation, which are the main focus of this paper, range from monitoring of service loads to the static and dynamic measurements of pressure, local temperatures and displacements during initial start-up after implementation of the design modifications. The proper function of supports has been proved and the quality of the simulation models has been confirmed. Some expected and some unexpected dynamic events have been detected during blow-down tests. It was demonstrated that the amplitudes of all dynamic loads stay within limits. The validation of analyses with comprehensive measurement has been an important proof of quality and delivered the redundancy required for the integrity of a nuclear power plant in service, enhancing the high level of safety even more.


Author(s):  
Thomas Wermelinger ◽  
Florian Bruckmüller ◽  
Benedikt Heinz

In the context of long-term operation or lifetime extension most regulatory bodies demand from utilities and operators of nuclear power plants to monitor and evaluate the fatigue of system, structures and components systematically. As does the Swiss Federal Nuclear Safety Inspectorate ENSI. The nuclear power plant Goesgen started its commercial operation in 1979 and will go into long-term operation in 2019. The increased demand for monitoring and evaluating fatigue due to the pending long-term operation led the Goesgen nuclear power plant to expand the scope of their surveillance and therefore to install AREVA’s fatigue monitoring system FAMOSi in the 2014 outage. The system consists of 39 measurement sections positioned at the primary circuit and the feed-water nozzles of the steam generators. The locations were chosen due to their sensitivity for fatigue. The installed FAMOSi system consists of a total of 173 thermocouples which were mounted in order to get the necessary input data for load evaluation. The advantage of FAMOSi is the possibility to obtain real data of transients near places with highest fatigue usage factors. Examples of steam generator feed-in during heating-up and cooling-down will be given. In addition, spray events before and after the installation of closed loop controlled spray valves will be compared. The measurements and the results of the load evaluation are not only of interest for internal use e.g. in regard to optimization of operation modes (e.g. load-following), but must also be reported to ENSI annually. In addition, by evaluation of stresses and determination of usage factors combined with an optimization of operation modes an early exchange of components can be avoided.


Sign in / Sign up

Export Citation Format

Share Document