Assessment of SIMMER-III Code Based on Steam Generator Tube Rupture Experiments in LIFUS5/Mod2 Facility

Author(s):  
Alessio Pesetti ◽  
Alessandro Del Nevo ◽  
Nicola Forgione

An experimental campaign investigating the postulated Steam Generator Tube Rupture (SGTR) event, in relevant configurations for Heavy Liquid Metal Reactors (HLMRs), was carried out in the separate-effect facility LIFU5/Mod2, at ENEA CR Brasimone. Ten tests were performed injecting pressurized subcooled water into the reaction tank partially filled by Lead-Bismuth Eutectic alloy (LBE) at 400°C with a cover gas of argon at about 2 bar. Fast pressure transducers, thermocouples and strain gages provided high-quality measurement data for improving the phenomena understanding and supporting the development and validation phase of computer codes for SGTR numerical simulation. The experimental campaign is composed by two series of tests, characterized by different water pressure: 40 and 16 bar. The first two tests belonging to the low pressure experiments are presented, highlighting the pressurization time trends of the water injection tank, injection line and reaction vessel. The injected water mass flow rate and temperature trends in the reaction vessel were measured. The former test is the reference one and the latter was carried out for investigating the injection of water with higher sub-cooling. A post-test analysis of the two mentioned tests was carried out by SIMMER-III code. The pressure profile in the water injection tank was set as boundary condition of the calculation. The numerical analysis provided injection line and reaction tank pressurization in agreement with the experimental data. The lower water temperature test provided a better accordance with the measured data, due to the lower evaporation along the injection line. The SIMMER-III analysis also studied the water-LBE interaction from the volume fraction point of view and the energy released in the total reaction tank and in its cover gas.

Author(s):  
Michael Flad ◽  
Shisheng Wang ◽  
Werner Maschek

The European Facility for Industrial Transmutation (EFIT) is developed to transmute long-lived actinides from spent fuel on an industrial scale. In this lead-cooled reactor an intermediate loop is eliminated for economic reasons. Within the framework of design and safety studies the impact of a steam generator tube rupture accident has been investigated. In this postulated event high-pressured liquid water blasts into the lead pool which could trigger various transients. As a major concern steam could be dragged into the core featuring a positive void worth. A thermal lead/water interaction could lead to in-core damage propagation; it could initiate a sloshing of the lead coolant and trigger voiding processes. Furthermore the pressurization of the cover gas needs to be considered. To prove the feasibility of the proposed design these risks are investigated and assessed. Numerical simulations are performed using the advanced safety analysis code SIMMER-III [2]. For the important issue of thermal lead/water interactions the SIMMER code has been validated against Japanese heavy-liquid/water injection experiments.


Author(s):  
Blazenka Maslovaric ◽  
Vladimir Stevanovic ◽  
Sanja Prica ◽  
Zoran Stosic

The tube rupture accident is one among the most risk-dominant events at the nuclear power plants. Several steam generator tube rupture accidents have occurred at the plants in the past. In this paper the Computational Multi-Fluid Dynamics (CMFD) investigation of the horizontal steam generator thermal-hydraulics during the tube rupture accident is performed. A guillotine of a steam generator U-tube is assumed with choked flow from the primary to the secondary side of the steam generator. Predicted are water and steam velocity fields, steam volume fraction distribution on the steam generator secondary (shell) side, as well as the swell level increase. Obtained multidimensional results are a support to the safety analyses of the steam generator tube rupture accident. Also, they serve as benchmark tests for an assessment of the applicability of one-dimensional horizontal steam generator models, developed by standard safety codes. Numerical simulation is performed with the multidimensional multi-fluid modelling approach. The two-phase flow around steam generator tubes in the bundle is modelled by the porous media approach. Interfacial mass, momentum and energy transfer is modelled with the closure laws, where some of them are specially developed for the conditions of the two-phase flow across tube bundles. The governing equations are solved with the SIMPLE type pressure-correction method that is derived for the conditions of multi-phase flow conditions.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1818
Author(s):  
Di-Si Wang ◽  
Bo Liu ◽  
Sheng Yang ◽  
Bin Xi ◽  
Long Gu ◽  
...  

China is developing an ADS (Accelerator-Driven System) research device named the China initiative accelerator-driven system (CiADS). When performing a safety analysis of this new proposed design, the core behavior during the steam generator tube rupture (SGTR) accident has to be investigated. The purpose of our research in this paper is to investigate the impact from different heating conditions and inlet steam contents on steam bubble and coolant temperature distributions in ADS fuel assemblies during a postulated SGTR accident by performing necessary computational fluid dynamics (CFD) simulations. In this research, the open source CFD calculation software OpenFOAM, together with the two-phase VOF (Volume of Fluid) model were used to simulate the steam bubble behavior in heavy liquid metal flow. The model was validated with experimental results published in the open literature. Based on our simulation results, it can be noticed that steam bubbles will accumulate at the periphery region of fuel assemblies, and the maximum temperature in fuel assembly will not overwhelm its working limit during the postulated SGTR accident when the steam content at assembly inlet is less than 15%.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1295
Author(s):  
Anghong Yu ◽  
Chuanzhen Wang ◽  
Haizeng Liu ◽  
Md. Shakhaoath Khan

Three products hydrocyclone screen (TPHS) can be considered as the combination of a conventional hydrocyclone and a cylindrical screen. In this device, particles are separated based on size under the centrifugal classification coupling screening effect. The objective of this work is to explore the characteristics of fluid flow in TPHS using the computational fluid dynamics (CFD) simulation. The 2 million grid scheme, volume fraction model, and linear pressure–strain Reynolds stress model were utilized to generate the economical grid-independence solution. The pressure profile reveals that the distribution of static pressure was axisymmetric, and its value was reduced with the increasing axial depth. The maximum and minimum were located near the tangential inflection point of the feed inlet and the outlets, respectively. However, local asymmetry was created by the left tangential inlet and the right screen underflow outlet. Furthermore, at the same axial height, the static pressure gradually decreased along the wall to the center. Near the cylindrical screen, the pressure difference between the inside and the outside cylindrical screen dropped from positive to negative as the axial depth increased from −35 to −185 mm. Besides, TPHS shows similar distributions of turbulence intensity I, turbulence kinetic energy k, and turbulence dissipation rate ε; i.e., the values fell with the decrease in axial height. Meanwhile, from high to low, the pressure values are distributed in the feed chamber, the cylindrical screen, and conical vessel; the value inside the screen was higher than the outer value.


2020 ◽  
pp. 1-1
Author(s):  
Yinghao Bai ◽  
Chaofeng Ye ◽  
Xinchen Tao ◽  
Na Zhang ◽  
Xiaoguang Li

2004 ◽  
Vol 270-273 ◽  
pp. 600-605
Author(s):  
Deok Hyun Lee ◽  
Myung Sik Choi ◽  
Do Haeng Hur ◽  
Jung Ho Han ◽  
Un Chul Lee

Sign in / Sign up

Export Citation Format

Share Document