A New Low Enrichment Uranium Core Design of MNSR

Author(s):  
Wang Mengjiao ◽  
Li Yiguo ◽  
Wu Xiaobo ◽  
Peng Dan ◽  
Hong Jingyan ◽  
...  

The Miniature Neutron Source Reactor (MNSR) is a low-power research reactor, which uses 90% high enriched uranium (HEU) fuel. However, due to the nuclear safety risk, and according to the principle of nuclear non-proliferation, MNSR must be gradually converted from HEU to low enriched uranium (LEU), which means the LEU fuel with U-235 enrichment less than 20% should be used. The prototype MNSR of China Institute of Atomic Energy has completed the transformation, but other commercial MNSRs have not finished, which is different with the prototype in the application and structure. Therefore, using MCNP code to simulate, calculate and optimization design LEU core has been done in this issue. Firstly, UO2 with U-235 enrichment of 12.5% was selected as the fuel pellet of LEU core, keeping the rest of the core unchanged. The Φ, excess reactivity and the worth of the central control rod are calculated and analyzed. The results show that the commercial MNSR of LEU conversion is feasible. Secondly, in this paper, through changing the fuel elements and the arrangement method, the new low enriched uranium (NLEU) core was designed to improve Φ/P ratio of the core, the proportion of thermal neutrons and the worth of the control rod. UO2 with U-235 enrichment of 19.75% was selected as the fuel pellet of the NLEU, NLEU not only meets the design parameters, but in many parameters, NLEU is better than LEU. The fuel element quantity is reduced by 43%, from original 344 to 196; reducing the amount of U-235 loading; improving the Φ/P ratio and the thermal neutron fraction is increased. The results show that the NLEU optimizes some parameters, simplifies the core structure, saves the construction cost, improves the nuclear safety and is more suitable for the application of MNSR.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Giang Phan ◽  
Hoai-Nam Tran ◽  
Kien-Cuong Nguyen ◽  
Viet-Phu Tran ◽  
Van-Khanh Hoang ◽  
...  

Neutronics analysis has been performed for the 500 kW Dalat Nuclear Research Reactor loaded with highly enriched uranium fuel using the SRAC code system. The effective multiplication factors, keff, were analyzed for the core at criticality conditions and in two cases corresponding to the complete withdrawal and the full insertion of control rods. MCNP5 calculations were also conducted and compared to that obtained with the SRAC code. The results show that the difference of the keff values between the codes is within 55 pcm. Compared to the criticality conditions established in the experiments, the maximum differences of the keff values obtained from the SRAC and MCNP5 calculations are 119 pcm and 64 pcm, respectively. The radial and axial power peaking factors are 1.334 and 1.710, respectively, in the case of no control rod insertion. At the criticality condition these values become 1.445 and 1.832 when the control rods are partially inserted. Compared to MCNP5 calculations, the deviation of the relative power densities is less than 4% at the fuel bundles in the middle of the core, while the maximum deviation is about 7% appearing at some peripheral bundles. This agreement indicates the verification of the analysis models.


Author(s):  
Aimin Zhang ◽  
Yalun Kang

China Advanced Research Reactor (CARR), which will be critical in China Institute of Atomic Energy (CIAE) in 2010, is a multipurpose, high neutron flux and tank-type (inverse neutron trap) reactor with compact core. Its nominal reactor power is 60MW and the maximum thermal neutron flux is about 8.0×1014n/cm2·s in heavy water tank. It has a cylindrical core having a diameter of about 450mm and a height of 850mm. The CARR’s core consists of seventeen plate-type standard fuel elements and four follower fuel elements, initially loaded with 10.97 kg of 235U. The fuel element has been designed with U3S2-Al dispersion containing 235U of (19.75±0.20)wt.% low enriched uranium (LEU) and having a density of 4.3gU/cm3. The aluminum alloy is used as the cladding. There are twenty-one and seventeen fuel plates in the standard and follower fuel element, respectively. There are specific requirements for design of the fuel element and strict limitation for the operation parameters due to the high heat flux and high velocity of coolant in CARR. Irradiation test of fuel element had been carried out at fuel element power of 3.1±20%MW at Russia MIR reactor. Average burnup of fuel element is up to 40%. This paper deals with the detailed design of fuel element for CARR, out-pile and in-pile test projects, including selection of fuel and structure material, description of element structure, miniplates and fuel element irradiation experiment, measurement of properties of fuel plate, fabrication of fuel element and test results.


2012 ◽  
Vol 27 (1) ◽  
pp. 75-83
Author(s):  
Milan Pesic

In 1958, the experimental RB reactor was designed as a heavy water critical assembly with natural uranium metal rods. It was the first nuclear fission critical facility at the Boris Kidric (now Vinca) Institute of Nuclear Sciences in the former Yugoslavia. The first non-reflected, unshielded core was assembled in an aluminium tank, at a distance of around 4 m from all adjacent surfaces, so as to achieve as low as possible neutron back reflection to the core. The 2% enriched uranium metal and 80% enriched uranium dioxide (dispersed in aluminum) fuel elements (known as slugs) were obtained from the USSR in 1960 and 1976, respectively. The so-called ?clean? cores of the RB reactor were assembled from a single type of fuel elements. The ?mixed? cores of the RB reactor, assembled from two or three types of different fuel elements, were also positioned in heavy water. Both types of cores can be composed as square lattices with different pitches, covering a range of 7 cm to 24 cm. A radial heavy water reflector of various thicknesses usually surrounds the cores. Up to 2006, four sets of clean cores (44 core configurations) have been accepted as criticality benchmarks and included into the OECD ICSBEP Handbook. The RB mixed core 39/1978 was made of 31 natural uranium metal rods positioned in heavy water, in a lattice with a pitch of 8?2 cm and 78


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
Giovanni Laranjo Stefani ◽  
Frederico Antônio Genezini ◽  
Thiago Augusto Santos ◽  
João Manoel de Losada Moreira

In this work a parametric study was carried to increase the production of radioisotopes in the IEA-R1 research reactor. The changes proposed to implement in the IEA-R1 reactor core were the substitution of graphite reflectors by beryllium reflectors, the removal of 4 fuel elements to reduce the core size and make available 4 additional locations to be occupied by radioisotope irradiation devices. The key variable analyzed is the thermal neutron flux in the irradiation devices.  The proposed configuration with 20 fuel elements in an approximately cylindrical geometry provided higher average neutron flux (average increment of 12.9 %) allowing higher radioisotope production capability. In addition, it provided 4 more positions to install  irradiation devices which allow a larger number of simultaneous irradiations practically doubling the capacity of radioisotope production in the IEA-R1 reactor. The insertion of Be reflector elements in the core has to be studied carefully since it tends to promote strong neutron flux redistribution in the core. A verification of design and safety parameters of the proposed  core was carried out. The annual fuel consumption will increase about 17 % and more storage space for spent fuel will be required.   


Author(s):  
Heng Yu ◽  
Guan-bo Wang ◽  
Da-zhi Qian ◽  
Yu-chuan Guo ◽  
Bo Hu

An increasing number of PSA programs concerning research reactors have been launched across the world. As with many other reactors, the CMRR (China Mianyang Research Reactor), a typical pool-type research reactor, regards the control rod shutdown system (CRSS) as its primary shutdown system which enables the reactor subcritical by dropping control rods into the core after a specific initiating event is detected. As a result, the CRSS is an essential ingredient of engineered safety features. It is necessary to enhance the reliability of the CRSS, ensuring the reactor can be successfully shut down when the ATWS — the anticipated transients without scram occurs. Therefore, additional facilities should be designed to cope with the extremely severe circumstance. Accordingly, the purpose of this paper is to evaluate the promotion of the CMRR’s safety degree and the reliability of its CRSS from the PSA’s perspective with an ATWS mitigation system installed. Results indicate that, by introducing the ATWS mitigation system, the failure probability of the CRSS can decrease from 1.52e−05 per demand to 3.35e−06 per demand, while the aggregate CDF (core damage frequency) induced by all IE (initiating event) groups, is able to decrease to a relatively low value 1.17e−05/y from its previous value 3.11e−06/y. It is apparent that the reliability of the CRSS as well as the safety degree of the overall reactor can be enhanced effectively by adding the ATWS mitigation system to the elementary design of the normal CRSS.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Nhi-Dien Nguyen ◽  
Kien-Cuong Nguyen ◽  
Ton-Nghiem Huynh ◽  
Doan-Hai-Dang Vo ◽  
Hoai-Nam Tran

The paper presents a conceptual design of a 10 MW multipurpose nuclear research reactor (MPRR) loaded with the low-enriched uranium (LEU) VVR-KN fuel type. Neutronics and burnup calculations have been performed using the REBUS-MCNP6 linkage system code and the ENDF/B-VII.0 data library. The core consists of 36 fuel assemblies: 27 standard fuel assemblies and 9 control fuel assemblies with the uranium density of 2.8 gU/cm3 and the 235U enrichment of 19.75 wt.%. The cycle length of the core is 86 effective full-power days with the excess reactivity of 9600 and 1039 pcm at the beginning of cycle and the end of cycle, respectively. The highest power rate and the highest discharged burnup of fuel assembly are 393.49 kW and 56.74% loss of 235U, respectively. Thermal hydraulics analysis has also been conducted using the PLTEMP4.2 code for evaluating the safety parameters at a steady state of the hottest channel. The maximum temperatures of coolant and fuel cladding are 66.0°C and 83.0°C, respectively. This value is lower than the design limit of 98°C for cladding temperature. Thermal fluxes at the vertical irradiation channels and the horizontal beam ports have been evaluated. The maximum thermal fluxes of 2.5 × 1014 and 8.9 ×1013 n·cm−2·s−1 are found at the neutron trap and the beryllium reflector, respectively.


Author(s):  
C. Vázquez-López ◽  
O. Del Ángel-Gómez ◽  
R. Raya-Arredondo ◽  
S. S. Cruz-Galindo ◽  
J. I. Golzarri-Moreno ◽  
...  

The neutron flux of the Triga Mark III research reactor was studied using nuclear track detectors. The facility of the National Institute for Nuclear Research (ININ), operates with a new core load of 85 LEU 30/20 (Low Enriched Uranium) fuel elements. The reactor provides a neutron flux around 2 × 1012 n cm-2s-1 at the irradiation channel. In this channel, CR-39 (allyl diglycol policarbonate) Landauer® detectors were exposed to neutrons; the detectors were covered with a 3 mm acrylic sheet for (n, p) reaction. Results show a linear response between the reactor power in the range 0.1 - 7 kW, and the average nuclear track density with data reproducibility and relatively low uncertainty (±5%). The method is a simple technique, fast and reliable procedure to monitor the research reactor operating power levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kien-Cuong Nguyen ◽  
Vinh-Vinh Le ◽  
Ton-Nghiem Huynh ◽  
Ba-Vien Luong ◽  
Nhi-Dien Nguyen

This paper presents results of steady-state thermal-hydraulic analysis for the designed working core of the Dalat Nuclear Research Reactor (DNRR) using the PLTEMP/ANL code. The core was designed to be loaded with 92 low-enriched uranium (LEU) VVR-M2 fuel bundles (FBs) and 12 beryllium rods surrounding a neutron trap at the core center, for replacement of the previous core with 104 high-enriched uranium (HEU) VVR-M2 FBs. Before using this code for thermohydraulic analysis of the designed LEU working core, it was validated by comparing calculation results with experimental data collected from the HEU working core of the DNRR. The discrepancy between calculated results and measured data was at the maximum about 0.8°C and 1.5°C of fuel cladding and outlet coolant temperatures, respectively. In the design calculation, thermohydraulic safety was confirmed through evaluation of the fuel cladding and coolant temperatures, as well as of other safety parameters such as Departure from Nucleate Boiling Ratio (DNBR) and Onset of Nucleate Boiling Ratio (ONBR). The calculation results showed that, in normal operation conditions at full nominal thermal power of 500 kW without uncertainty parameters, the maximum fuel cladding temperature of the hottest FB was about 90.4°C, which is lower than its limit value of 103°C, the minimum DNBR was 32.0, which is much higher than the recommended value of 1.5, and the minimum ONBR was 1.43, which is higher than the recommended value of 1.4 for VVR-M2 LEU fuel type. When the global and local hot channel factors were taken into account, the maximum temperature of fuel cladding at the hottest FB was about 98.4 °C, for global only, and 114.3°C, for global together with local hot channel factors. The calculation results confirm the safety operation of the designed LEU core loaded with 92 fresh VVR-M2 FBs.


Author(s):  
Ebrahim Afshar ◽  
Alireza Shahidi

This paper presents preliminary results of a study undertaken to investigate the possibility of raising the power of Tehran Research Reactor (TRR) from 5 to 10 MW (th), keeping the same core configuration and with minimum changes in the primary cooling circuit. The main aim of TRR upgrade is to increase the volume of radioisotope production. The neutronic analysis was carried out for a fresh core with 22 Standard Fuel Elements (SFE) under normal operating conditions. Two different calculational lines were used to simulate the neutronic behavior in the core and perform the necessary neutronic calculations. First, combination of cell calculation transport code WIMS-D/4 [1] and three dimensional core calculation diffusion code CITATION [2] were used to and next a Monte Carlo code MCNP-4B [3] together with point depletion code ORIGEN-2 [4] were used. The results obtained show good agreement between these two different schemes.


Author(s):  
J. A. Rabba ◽  
M. Y. Onimisi ◽  
D. O. Samson

A standardized burnup analysis using VENTURE-PC computer codes system has been performed for the core conversion study of Nigeria Research Reactor-1. The result obtained from this analysis showed that the mass of Uranium decreases with increase in the number of days of reactor operation while the quantity of Plutonium continues to build up linearly. The buildup of the fissile isotope in the Low Enriched Uranium (LEU) core is very much greater than in the Highly Enriched Uranium (HEU) core. The quantity of Uranium-235 consumed and the amount of Plutonium-239 produce in the core of the reactor were 13.95 g and 0.766745 g respectively for the period of 11 years of reactor operation which is in good agreement with other literatures. This results obtained showed that uranium dioxide (UO2) fuel is a potential material for future Low Enriched Uranium (LEU) core conversion of Nigeria Research Reactor.


Sign in / Sign up

Export Citation Format

Share Document