Online Adversarial Learning of Reactor State

Author(s):  
Yeni Li ◽  
Hany S. Abdel-Khalik ◽  
Elisa Bertino

This paper is in support of our recent efforts to designing intelligent defenses against false data injection attacks, where false data are injected in the raw data used to control the reactor. Adopting a game-model between the attacker and the defender, we focus here on how the attacker may estimate reactor state in order to inject an attack that can bypass normal reactor anomaly and outlier detection checks. This approach is essential to designing defensive strategies that can anticipate the attackers moves. More importantly, it is to alert the community that defensive methods based on approximate physics models could be bypassed by the attacker who can approximate the models in an online mode during a lie-in-wait period. For illustration, we employ a simplified point kinetics model and show how an attacker, once gaining access to the reactor raw data, i.e., instrumentation readings, can inject small perturbations to learn the reactor dynamic behavior. In our context, this equates to estimating the reactivity feedback coefficients, e.g., Doppler, Xenon poisoning, etc. We employ a non-parametric learning approach that employs alternating conditional estimation in conjunction with discrete Fourier transform and curve fitting techniques to estimate reactivity coefficients. An Iranian model of the Bushehr reactor is employed for demonstration. Results indicate that very accurate estimation of reactor state could be achieved using the proposed learning method.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abhik Datta ◽  
Kian Fong Ng ◽  
Deepan Balakrishnan ◽  
Melissa Ding ◽  
See Wee Chee ◽  
...  

AbstractFast, direct electron detectors have significantly improved the spatio-temporal resolution of electron microscopy movies. Preserving both spatial and temporal resolution in extended observations, however, requires storing prohibitively large amounts of data. Here, we describe an efficient and flexible data reduction and compression scheme (ReCoDe) that retains both spatial and temporal resolution by preserving individual electron events. Running ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was 100-fold smaller than the raw data and saved directly onto network-attached storage drives over a 10 GbE connection. We discuss calibration techniques that support electron detection and counting (e.g., estimate electron backscattering rates, false positive rates, and data compressibility), and novel data analysis methods enabled by ReCoDe (e.g., recalibration of data post acquisition, and accurate estimation of coincidence loss).


Author(s):  
Alexander Ponomarev ◽  
Konstantin Mikityuk

Abstract In the paper the reactivity characteristics of the core of the large sodium fast reactor Superphenix (SPX) were evaluated and compared with available experimental data. The analysis was performed using the TRACE system code modified for the fast reactor applications. The simplified core model was developed aiming to overcome the lack of detailed information on design and realistic core conditions. Point Kinetics neutronic model with all relevant reactivity feedbacks was used to calculate transient power. The paper focuses on challenging issue of modelling of the transient thermal responses of primary system structural elements resulting in reactivity feedbacks specific to such large fast reactor which cannot be neglected. For these effects, the model was equipped with dedicated heat structures to reproduce important feedbacks due to vessel wall, diagrid, strongback, control rod drive lines thermal expansion. Peculiarly, application of the model was considered for a whole range of core conditions from zero power to 100% nominal. The developed core model allowed reproducing satisfactorily the core reactivity balance between zero power at 180?C and full power conditions. Additionally, the reactivity coefficients k, g, h at three power levels were calculated and satisfactory agreement with experimental measurements was also observed. The study demonstrated feasibility of application of relatively simple model with adjusted parameters for analysis of different conditions of very complex system.


2015 ◽  
Vol 30 (2) ◽  
pp. 124-131
Author(s):  
Seyed Hosseini

The current work aims at presenting a simple model for PBM-type reactors' dynamic behavior analysis. The proposed model is based on point kinetics equations coupled with feedbacks from fuel and moderator temperatures. The temperature reactivity coefficients were obtained through MCNP code and via available experimental data. Parameters such as heat capacity and heat conductivity were carefully analyzed and the final system of equations was numerically solved. The obtained results, while in partial agreement with previously proposed models, suggest lower sensitivity to step reactivity insertion as compared to other reactor designs and inherent safety of the design.


Author(s):  
Alexander Ponomarev ◽  
Konstantin Mikityuk ◽  
Emil Fridman ◽  
Vincenzo Anthony Di Nora ◽  
Evaldas Bubelis ◽  
...  

Abstract The paper presents a transient simulation phase of the new benchmark on a large sodium fast reactor (SFR). This phase of the benchmark is devoted to the modelling of selected operational transients performed during start-up tests of the French SFR Superphénix. Six operational transients were selected for the analysis. The specifications of a simplified thermal hydraulic model equipped with point kinetics reactivity data and boundary conditions for the selected transients are given in the paper. The developed model contains necessary thermal hydraulic description of the primary system components, assumptions to account for thermal expansion reactivity feedbacks from out-of-core structures, neutron kinetics parameters, power distribution, and reactivity coefficients. The neutronic input parameters were obtained with the help of the Monte Carlo code Serpent during the first phase of the benchmark related to static neutronic characterization of the core. In this study, the solution of the transient benchmark was obtained with three thermal hydraulic system codes, namely TRACE, SIM-SFR, and ATHLET. The numerical results, compared to the available experimental data, exhibit a reasonable mutual agreement. Particular discrepancies between calculations and experiments could not be fully resolved. Therefore, a set of recommendations for achieving an improved agreement was proposed. In general, the proposed transient benchmark can be seen as an effective tool for validation and cross comparisons of system codes applied for safety analyses of SFRs, including approbation and comparison of different modelling features for thermal expansion of the out-of-core structures.


Author(s):  
W. R. Schucany ◽  
G. H. Kelsoe ◽  
V. F. Allison

Accurate estimation of the size of spheroid organelles from thin sectioned material is often necessary, as uniquely homogenous populations of organelles such as vessicles, granules, or nuclei often are critically important in the morphological identification of similar cell types. However, the difficulty in obtaining accurate diameter measurements of thin sectioned organelles is well known. This difficulty is due to the extreme tenuity of the sectioned material as compared to the size of the intact organelle. In populations where low variance is suspected the traditional method of diameter estimation has been to measure literally hundreds of profiles and to describe the “largest” as representative of the “approximate maximal diameter”.


Author(s):  
Virginie Crollen ◽  
Julie Castronovo ◽  
Xavier Seron

Over the last 30 years, numerical estimation has been largely studied. Recently, Castronovo and Seron (2007) proposed the bi-directional mapping hypothesis in order to account for the finding that dependent on the type of estimation task (perception vs. production of numerosities), reverse patterns of performance are found (i.e., under- and over-estimation, respectively). Here, we further investigated this hypothesis by submitting adult participants to three types of numerical estimation task: (1) a perception task, in which participants had to estimate the numerosity of a non-symbolic collection; (2) a production task, in which participants had to approximately produce the numerosity of a symbolic numerical input; and (3) a reproduction task, in which participants had to reproduce the numerosity of a non-symbolic numerical input. Our results gave further support to the finding that different patterns of performance are found according to the type of estimation task: (1) under-estimation in the perception task; (2) over-estimation in the production task; and (3) accurate estimation in the reproduction task. Moreover, correlation analyses revealed that the more a participant under-estimated in the perception task, the more he/she over-estimated in the production task. We discussed these empirical data by showing how they can be accounted by the bi-directional mapping hypothesis ( Castronovo & Seron, 2007 ).


1962 ◽  
Vol 17 (9) ◽  
pp. 657-658 ◽  
Author(s):  
Leroy Wolins
Keyword(s):  

2020 ◽  
Vol 99 (4) ◽  
pp. 344-350
Author(s):  
Evgeny V. Zibarev ◽  
A. S. Afanasev ◽  
O. V. Slusareva ◽  
T. I. Muragimov ◽  
V. A. Stepanets ◽  
...  

In recent years, in the Russian Federation there has been an increase in the levels of radiofrequency electromagnetic fields in residential areas, including due to an increase in the number of base stations (BS). The purpose of sanitary and epidemiological surveillance at the stages of placement and commissioning of base stations (BS) is to prevent their adverse effects on public health. The increase in the number of base stations, together with the advent of new electronic equipment and antennas, provide opportunities for improving the processes of their accounting at the stage of placement and monitoring of the levels of radiofrequency electromagnetic fields at the operation stage. This automation tool can be a geo-information portal for providing sanitary and epidemiological surveillance of cellular base stations. The prototype of the geo-information portal allows both calculating the size of sanitary protection zones (SPZ) and building restriction zones (RZ) from the BS in online mode, displaying the results of calculations in graphical form and issuing sanitary and epidemiological conclusions for the placement and operation of base stations. The geo-information portal has the ability to synchronize with the data of the radio frequency center. Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing will be able to receive up-to-date analytical data. There will be completely automated processes of collecting, processing and storing information on BS.


Sign in / Sign up

Export Citation Format

Share Document