Experimental Research and Development of Safety Analysis Systems for Advanced Types of Fuel Rods

Author(s):  
Alexander I. Maximkin ◽  
Ivan S. Kryukov ◽  
Alexander N. Ableev ◽  
Alexander V. Berestov ◽  
Ilya I. Rodko

According to the development of the concept of “zero failure” or “zero fuel element defect”, accepted in 2011, which consists in reducing the number of fuel elements that are depressurized in the process of operation to the reached level in the leading countries in nuclear energy (10−6–10−5 defective fuel rods) and avoidance of fuel assemblies with non-hermetic cladding of fuel rods for further operation, including defects with a “gas leak” type, new promising fuels are being developed and introduced, including methods for justifying their safety. Thus, to ensure reliability and safety of new fuel types, it is necessary to provide procedures for monitoring current performance characteristics at all stages of the life cycle of fuel rods. In this paper, experience is given on the development and implementation of instrumentation and methods for monitoring of fuel rods with advanced types of nuclear fuel for VVER reactors that ensure the reliability, safety and competitiveness of technologies associated with the use of advanced fuel rod types, and the implementation of associated components, systems and equipment for monitoring and diagnostics. The features of the applied techniques are presented, and the new system of requirements for the implemented equipment created on their basis. This research continues, and the analysis of intermediate experimental data is carried out in this article.

2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcin Kopeć ◽  
Martina Malá

The ultrasonic (UT) measurements have a long history of utilization in the industry, also in the nuclear field. As the UT transducers are developing with the technology in their accuracy and radiation resistance, they could serve as a reliable tool for measurements of small but sensitive changes for the nuclear fuel assembly (FA) internals as the fuel rods are. The fuel rod bow is a phenomenon that may bring advanced problems as neglected or overseen. The quantification of this issue state and its probable progress may help to prevent the safety-related problems of nuclear reactors to occur—the excessive rod bow could, in the worst scenario, result in cladding disruption and then the release of actinides or even fuel particles to the coolant medium. Research Centre Rez has developed a tool, which could serve as a complementary system for standard postirradiation inspection programs for nuclear fuel assemblies. The system works in a contactless mode and reveals a 0.1 mm precision of measurements in both parallel (toward the probe) and perpendicular (sideways against the probe) directions.


Author(s):  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Giovanni Ferrari ◽  
Stanislas Le Guisquet ◽  
Kostas Karazis ◽  
...  

In Pressurized Water Reactors (PWR), fuel assemblies are composed of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the non-linear response of the structure and, particularly, its dissipation, is of paramount importance for the choice of safety margins. To model the nonlinear dynamic response of fuel rods, the identification of nonlinear stiffness and damping parameters is required. The case of a single fuel rod with clamped-clamped boundary conditions was investigated by applying harmonic excitation at various force levels. Different configurations were implemented testing the fuel rod in air and in still water; the effect of metal pellets simulating nuclear fuel pellets inside the rods was also recorded. Non-linear parameters were extracted from some of the experimental response curves by means of a numerical tool based on the harmonic balance method. The axisymmetric geometry of fuel rods resulted in the presence of a one-to-one internal resonance phenomenon, which has to be taken into account modifying accordingly the numerical identification tool. The internal motion of fuel pellets is a cause of friction and impacts, complicating further the linear and non-linear dynamic behavior of the system. An increase of the equivalent viscous-based modal damping with excitation amplitude is often shown during geometrically non-linear vibrations, thus confirming previous experimental findings in the literature.


Author(s):  
V. Jagannathan ◽  
Usha Pal ◽  
R. Karthikeyan ◽  
Devesh Raj

Loading of seedless thoria rods in internal blanket regions and using them later as part of seeded fuel assemblies is the central theme of the thorium breeder reactor (ATBR) concept [1]. The fast reactors presently consider seedless blanket region surrounding the seeded core region. This results in slower fissile production rate in comparison to fissile depletion rate per unit volume. The overall breeding is achieved mainly by employing blanket core with more than double the volume of seeded core. The blanket fuel is discharged with fissile content of ∼30g/kg, which is much less than the asymptotic maximum possible fissile content of 100g/kg. This is due to smaller coolant flow provided for in the blanket regions. In a newly proposed fast thorium breeder reactor (FTBR) [2], the blanket region is brought in and distributed through out the core. By this the fissile depletion and production rates per unit volume become comparable. The core considered simultaneous breeding from both fertile thoria and depleted uranium and hence the concept can be called as fast twin breeder reactor as well. Sodium is used as coolant. The blanket fuel rods achieve nearly 80% of the seed fuel rod burnup and also contain nearly the maximum possible fissile content at the time of discharge. In this paper a comparison of FTBR core characteristics with oxide and metallic fuel are compared.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Armando C. Marino

The BaCo code (“Barra Combustible”) was developed at the Atomic Energy National Commission of Argentina (CNEA) for the simulation of nuclear fuel rod behaviour under irradiation conditions. We present in this paper a brief description of the code and the strategy used for the development, improvement, enhancement, and validation of a BaCo during the last 30 years. “Extreme case analysis”, parametric (or sensitivity), probabilistic (or statistic) analysis plus the analysis of the fuel performance (full core analysis) are the tools developed in the structure of BaCo in order to improve the understanding of the burnup extension in the Atucha I NPP, and the design of advanced fuel elements as CARA and CAREM. The 3D additional tools of BaCo can enhance the understanding of the fuel rod behaviour, the fuel design, and the safety margins. The modular structure of the BaCo code and its detailed coupling of thermo-mechanical and irradiation-induced phenomena make it a powerful tool for the prediction of the influence of material properties on the fuel rod performance and integrity.


Author(s):  
Giovanni Ferrari ◽  
Stanislas Le Guisquet ◽  
Prabakaran Balasubramanian ◽  
Marco Amabili ◽  
Brian Painter ◽  
...  

In Pressurized Water Reactors (PWR), fuel assemblies are made up of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the nonlinear response of the structure, and, particularly, its dissipation, is of paramount importance for the choice of safety margins, in the design of fuel assemblies, to ensure their functionality and safety in the worst external condition scenarios. To model the nonlinear dynamic response of fuel rods, the identification of the nonlinear stiffness and damping parameters is required. A tool based on harmonic balance method was developed to identify these parameters from the experimentally obtained force-response curves, considering one-to-one internal resonance phenomenon present in axisymmetric structures such as cylindrical tubes and shells. To validate the tool, it was applied to the reference case of circular cylindrical shell filled with water, which revealed an increase of damping with the excitation amplitude. In the following paper, the more realistic case of a single fuel rod with clamped-clamped boundary condition was investigated by applying harmonic excitation at various force levels. The nonlinear parameters including damping were extracted from experimental results by means of the adapted tool. An increase in damping with excitation amplitude has been shown according to earlier studies.


Author(s):  
Ladislav Pecinka ◽  
Jaroslav Svoboda ◽  
Vladimír Zeman

Fretting wear is a particular type of wear that is expected to occur in fuel assemblies of pressurized water cooled nuclear reactors. Fretting damage of fuel rods may cause Nuclear Power Plant (NPP) operations problems and are very expensive to repair. As utilities and fuel vendors adopt higher utilization of uranium and improved thermal margins plants, burned fuel rods will be loaded at core the periphery as part of the margin mechanisms. Pressurized Water Reactors (PWRs) have experienced fuel rods fretting wear failures due to flow induced vibrations. This study describes basic results of theoretical analysis and describes experiments to predict thinning of the Zr cladding wall thickness performed.


2021 ◽  
Vol 247 ◽  
pp. 09028
Author(s):  
Dennis Mennerdahl

Benchmarks are needed to validate methods to account for temperature-dependence of nuclear data. An evaluation of 37 KRITZ-1-Mk critical water height measurements, together with associated iso-reactivity temperature effects and coefficients, is released with the 2019 Handbook of the International Reactor Physics Experiment Evaluation Project (IRPhEP). The KRITZ zero-power research reactor, operated between 1969 and 1975 in Studsvik (Sweden), was contained in a pressure vessel, allowing full size fuel assemblies or fuel rods in light water at temperatures up to 250 °C without boiling. Preliminary results were published in 1971 and 1972 for four series of altogether 37 measurements with Marviken (Boiling Heavy Water Reactor) UO2 fuel rods, each containing a 235U isotopic mass fraction of 1.35 %. Temperature was the predictor variable, while critical water height was the response variable. Each series was characterized by the fuel rod lattice design and by the soluble boron concentration in water. The KRITZ measurements were focused on temperature-dependence (differences). High measurement correlations reduced the ?k uncertainties, typically from 195 pcm to 40 pcm for a large temperature change. Thermal expansion of fuel and reactor components was not measured. Detailed and simple benchmarks include estimated thermal expansion as a simplification. Benchmark calculation results using JEFF-3.3 nuclear data reduce the large biases observed for older libraries but a remarkable positive temperature trend is observed for series 4. In 2019, Studsvik Nuclear released information on KRITZ-1-Mk and on other KRITZ-1 and KRITZ-2 critical measurements with Boiling Water Reactor fuel assemblies and fuel rod clusters.


2019 ◽  
pp. 191-205 ◽  
Author(s):  
B. A. Gurovich ◽  
A. S. Frolov ◽  
E. A. Kuleshova ◽  
D. A. Maltsev ◽  
D. V. Safonov ◽  
...  

The paper presents microstructural studies of specimens cut from fuel elements made of E110 spongy zirconium-based alloy after operation in WWER-1000 before reaching the burnout of ~35 MW per day/kg U. As a result of exposure to high temperatures and neutron irradiation significant changes in the phase composition of the material of fuel rods claddings appear in particles β-Nb’ size, density, and composition; composition of the Laves phase, formation of dislocation loops of α-type, as well as δ and γ hydrides. The main structural elements determining the degradation of the mechanical properties of the E110 alloy under irradiation are dislocation loops and fine-phase precipitates due to their relatively large density. The data obtained can be used to construct dose dependences of microstructural changes with the aim of predicting the residual life of claddings and fuel assemblies as a whole.


2018 ◽  
pp. 20-26
Author(s):  
A.M. Abdullayev ◽  
A.I. Zhukov ◽  
S.V. Maryokhin ◽  
S.D. Riabchykov

A method for calculating the engineering margin factor (EMF) in calculations of the energy release in the core of VVER-1000 reactors is proposed in the paper. The analysis of various approaches in the calculation of EMF is carried out and various factors influencing EMF and the ways of their consideration —deterministic and statistical — are determined. The main attention is paid to the influence of gaps between the fuel assemblies on the energy release of fuel rods and the contribution of this factor to the EMF. The limitations and conservatism of two-dimensional small-scale calculations of the energy release of fuel rods in case of deviation of the gap size between the fuel assemblies from the design one are shown. A three-dimensional approach to calculating the contribution of gaps to the EMF is proposed. The approach is based on detailed measurements of the shape of fuel assemblies removed from the core performed at Zaporizhzhya NPP [13]; simulation of the distribution of gaps in the reactor core [16] using measurement data; two-dimensional calculations of the energy release of fuel rods in separate fuel assemblies, surrounded by gaps of different widths, with mirroring boundary conditions; three-dimensional calculations of energy release of fuel rods in fuel assemblies in the reactor core. Two-dimensional and three-dimensional calculations are performed by the wellknown ALPHA-H/PHOENIX-H/ANC-H codes. The proposed approach allows considering not only the change in the fuel rod power, particularly of the peripheral rods, which is inherent in the currently used methods of calculating EMF, but also takes into account the change in the power of the fuel assemblies in the core, which makes the proposed method more realistic and removes the excessive conservatism of EMF calculations and, thereby, allows improving fuel efficiency. For fuel assemblies produced by Westinghouse, it is proposed to use full EMF: for fuel rod power (FΔH) 1.111 and for fuel rod linear power (FQ) 1.173. The use of the BEACONTM monitoring system makes it possible to further reduce the EMF: for fuel rod power (FΔH) - up to 1.084 and for fuel rod linear power (FQ) - up to 1.121.


Author(s):  
Qi Huan-huan ◽  
Feng Zhi-peng ◽  
Jiang Nai-bin ◽  
Huang Qian ◽  
Huang Xuan

Flow elastic stability and vortex shedding were two important mechanisms of the flow induced vibration analysis. Due to the influence of manufacturing process, transportation and irradiation, the clamping action of grid on fuel rods may be invalid. Taking one fuel assemblies as an example, the effects of clamping failure on the natural frequencies, mode shapes, flow elastic stability and vortex shedding were studied. The results show that the effect of the rigid convex support failure on the natural frequency was directly related to the mode shape. The effect of the grid rigid convex failure near the nodes with larger amplitude on the natural frequency was obvious. The velocity of flow at the top and bottom of the fuel rods were larger and the size was comparable, this induced that the rigid convex failure of the top and bottom grids had a significant effect on the ratio of flow elastic stability and the vortex shedding.


Sign in / Sign up

Export Citation Format

Share Document