An Experimental Study of Liquid Flooding in Vertical Large Scale Rectangular Channel With the Counter-Current Flow of Air and Water Film

Author(s):  
Kashuai Du ◽  
Po Hu ◽  
Shuwei Zhai ◽  
Xiaojie Yang ◽  
Weibo Wang

In the present study, a test facility, called WAFT [1], has been set up to study liquid flooding phenomena on a heated large flat plate with the counter-current air-water flow. The various thermal hydraulic working condition parameters, especially, temperature and velocity of water, air and oil media, could be obtained by adjust the control devices, such as, heater, valve and frequency regulator. Because of transparent organic glass slab in the test section, the dynamic behavior of water film flow in the different locations of test area can be clearly observed by virtue of high-speed video camera, such as wave pattern change, film rupture, droplet splash and dry spot occurrence. During the test, a series of tests were performed under the conditions of steel plate heat flux 25 kw/m2, the water film with mass flow rate 0.1 and 0.6 kg/s.m and the temperature 70 and 92 °C, the velocity of air entrance ranging from 6.0 to 11.50 m/s and the inlet air temperature of 45 and 60 °C, respectively. According to the acquisition data, a modified Wallis liquid flooding predicted relation was proposed considering the influence factor of temperature from large steel plates, air and water film, i.e., the effect of water film evaporation. The results indicate that the mass flow rate of water film and inlet air velocity have a great effect on the emergence of liquid flooding.

Author(s):  
Youjia Zhang ◽  
Weimin Ma ◽  
Shengjie Gong

This study is concerned with liquid film dynamics and stability of annular flow, which plays an important role in understanding film rupture and dryout in boiling heat transfer. The research work starts from designing and making a test facility which enables the visualization and measurement of liquid film dynamics. A confocal optical sensor is applied to track the evolution of film thickness. A horizontal rectangular channel made of glass is used as the test section. Deionized water and air are supplied into that channel in such a way that an initial stratified flow forms, with the liquid film on the bottom wall. The present study is focused on characterization of liquid film profile and dynamics in term of interfacial wave and shear force induced film rupture under adiabatic condition. Based on the experimental data and analysis, it is found that given a constant water flowrate, the average thickness of water film decreases with increasing air flowrate, while the interfacial wave of the two-phase flow is intensified. As the air flowrate reaches a critical value, a localized rupture of the water film occurs.


Author(s):  
Nathan Schroeder ◽  
Henk Laubscher ◽  
Brantley Mills ◽  
Clifford K. Ho

Abstract Falling particle receivers (FPRs) are being studied in concentrating solar power applications to enable high temperatures for supercritical CO2 (sCO2) Brayton power cycles. The falling particles are introduced into the cavity receiver via a linear actuated slide gate and irradiated by concentrated sunlight. The thickness of the particle curtain associated with the slide-gate opening dimension dictates the mass flow rate of the particle curtain. A thicker, higher mass flow rate, particle curtain would typically be associated with a smaller temperature rise through the receiver, and a thinner, lower mass flow rate, particle curtain would result in a larger temperature rise. Using the receiver outlet temperature as the process variable and the linear actuated slide gate as the input parameter a proportional, integral, and derivative (PID) controller was implemented to control the temperature of the particles leaving the receiver. The PID parameters were tuned to respond in a quick and stable manner. The PID controlled slide gate was tested using the 1 MW receiver at the National Solar Thermal Test Facility (NSTTF). The receiver outlet temperature was ramped from ambient to 800°C then maintained at the setpoint temperature. After reaching a steady-state, perturbations of 15%–20% of the initial power were applied by removing heliostats to simulate passing clouds. The PID controller reacted to the change in the input power by adjusting the mass flow rate through the receiver to maintain a constant receiver outlet temperature. A goal of ±2σ ≤ 10°C in the outlet temperature for the 5 minutes following the perturbation was achieved.


2019 ◽  
Vol 76 (5) ◽  
pp. 285-310
Author(s):  
Feng Gao ◽  
Weihong Peng ◽  
Xuan Dong ◽  
Wei Zhang ◽  
Donghui Zhao

Author(s):  
K. V. L. Narayana Rao ◽  
N. Ravi Kumar ◽  
G. Ramesha ◽  
M. Devathathan

Can type combustors are robust, with ease of design, manufacturing and testing. They are extensively used in industrial gas turbines and aero engines. This paper is mainly based on the work carried out in designing and testing a can type combustion chamber which is operated using JET-A1 fuel. Based on the design requirements, the combustor is designed, fabricated and tested. The experimental results are analysed and compared with the design requirements. The basic dimensions of the combustor, like casing diameter, liner diameter, liner length and liner hole distribution are estimated through a proprietary developed code. An axial flow air swirler with 8 vanes and vane angle of 45 degree is designed to create a re-circulation zone for stabilizing the flame. The Monarch 4.0 GPH fuel nozzle with a cone angle of 80 degree is used. The igniter used is a high energy igniter with ignition energy of 2J and 60 sparks per minute. The combustor is modelled, meshed and analysed using the commercially available ansys-cfx code. The geometry of the combustor is modified iteratively based on the CFD results to meet the design requirements such as pressure loss and pattern factor. The combustor is fabricated using Ni-75 sheet of 1 mm thickness. A small combustor test facility is established. The combustor rig is tested for 50 Hours. The experimental results showed a blow-out phenomenon while the mass flow rate through the combustor is increased beyond a limit. Further through CFD analysis one of the cause for early blow out is identified to be a high mass flow rate through the swirler. The swirler area is partially blocked and many configurations are analysed. The optimum configuration is selected based on the flame position in the primary zone. The change in swirler area is implemented in the test model and further testing is carried out. The experimental results showed that the blow-out limit of the combustor is increased to a good extent. Hence the effect of swirler flow rate on recirculation zone length and flame blow out is also studied and presented. The experimental results showed that the pressure loss and pattern factor are in agreement with the design requirements.


Author(s):  
Michael J. Pekris ◽  
Gervas Franceschini ◽  
Andrew K. Owen ◽  
Terry V. Jones ◽  
David R. H. Gillespie

The secondary air system of a modern gas or steam turbine is configured to satisfy a number of requirements, such as to purge cavities and maintain a sufficient flow of cooling air to key engine components, for a minimum penalty on engine cycle efficiency and specific fuel consumption. Advanced sealing technologies, such as brush seals and leaf seals, are designed to maintain pressures in cavities adjacent to rotating shafts. They offer significant reductions in secondary air parasitic leakage flows over the legacy sealing technology, the labyrinth seal. The leaf seal comprises a series of stacked sheet elements which are inclined relative to the radial direction, offering increased axial rigidity, reduced radial stiffness, and good leakage performance. Investigations into leaf seal mechanical and flow performance have been conducted by previous researchers. However, limited understanding of the thermal behavior of contacting leaf seals under sustained shaft contact has led to the development of an analytical model in this study, which can be used to predict the power split between the leaf and rotor from predicted temperature rises during operation. This enables the effects of seal and rotor thermal growth and, therefore, implications on seal endurance and rotor mechanical integrity to be quantified. Consideration is given to the heat transfer coefficient in the leaf pack. A dimensional analysis of the leaf seal problem using the method of extended dimensions is presented, yielding the expected form of the relationship between seal frictional power generation, leakage mass flow rate, and rotor temperature rise. An analytical model is derived which is in agreement. Using the derived leaf temperature distribution formula, the theoretical leaf tip temperature rise and temperature distributions are computed over a range of mass flow rates and frictional heat values. Experimental data were collected in high-speed tests of a leaf seal prototype using the Engine Seal Test Facility at Oxford University. These data were used to populate the analytical model and collapsed well to confirm the expected linear relationship. In this form, the thermal characteristic can be used with predictions of mass flow rate and frictional power generated to estimate the leaf tip and rotor temperature rise in engine operation.


Author(s):  
C. Samuel Martin

Careful experiments have been conducted for the purpose of investigating the phenomenon of condensation-induced waterhammer in an ammonia refrigeration system. To initiate a waterhammer event warm ammonia gas was introduced over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. The occurrence of condensation-induced waterhammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced waterhammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate waterhammer was greater as the initial liquid was lowered.


Author(s):  
Chihiro Myoren ◽  
Yasuo Takahashi ◽  
Manabu Yagi ◽  
Takanori Shibata ◽  
Tadaharu Kishibe

An axial compressor was developed for an industrial gas turbine equipped with a water atomization cooling (WAC) system, which is a kind of inlet fogging technique with overspray. The compressor performance was evaluated using a 40MW-class test facility for the advanced humid air turbine system. A prediction method to estimate the effect of WAC was developed for the design of the compressor. The method was based on a streamline curvature (SLC) method implementing a droplet evaporation model. Four test runs with WAC have been conducted since February 2012. The maximum water mass flow rate was 1.2% of the inlet mass flow rate at the 4th test run, while the design value was 2.0%. The results showed that the WAC decreased the inlet and outlet temperatures compared with the DRY (no fogging) case. These decreases changed the matching point of the gas turbine, and increased the mass flow rate and the pressure ratio by 1.8% and 1.1%, respectively. Since prediction results agreed with the results of the test run qualitatively, the compressor performance improvement by WAC was confirmed both experimentally and analytically. The test run with the design water mass flow rate is going to be conducted in the near future.


Author(s):  
Sibel Tas ◽  
Sertac Cadirci ◽  
Hasan Gunes ◽  
Kemal Sarioglu ◽  
Husnu Kerpicci

The aim of this experimental study is to investigate the mass flow rate of the lubricating oil in a hermetic reciprocating compressor. Essential parameters affecting the performance of the lubrication are the rotational speed of the crankshaft, the viscosity of the oil, the operating temperature and the submersion depth of the crankshaft. An experimental setup was built as to measure the oil mass flow rate with respect to the oil temperature variation during different operating conditions. The influence of the governing parameters such as the rotational speed, temperature (viscosity) and the submersion depth on the mass flow rate from crankshaft outlet are studied in detail. In addition, the oil flow visualization from the upper hole of the crankshaft is performed using a high-speed camera in order to observe the effectiveness of the lubrication of the various parts of the compressor. This study reveals that with increasing rotational speed, the submersion depth of the crankshaft and with decreasing viscosity of the lubricant, the mass flow rate from the crankshaft increases.


2016 ◽  
Vol 797 ◽  
pp. 604-629 ◽  
Author(s):  
S. Im ◽  
D. Baccarella ◽  
B. McGann ◽  
Q. Liu ◽  
L. Wermer ◽  
...  

The unstart phenomena in a model scramjet with a free stream Mach number of 4.5 were investigated at an arc-heated hypersonic wind tunnel. High-speed schlieren imaging and high resonance frequency pressure measurements were used to capture the flow features during the unstart process. Three unstart conditions were tested: (i) a low-enthalpy free stream with mass loading, (ii) a high-enthalpy free stream with mass loading and (iii) a high-enthalpy free stream with mass loading and heat release. It was revealed that the unstart threshold and the time from the onset to the completion of unstart depended strongly on the mass loading rate and the heat exchange. The negative heat addition (cooling) significantly increased the threshold of mass flow rate triggering unstart. The decrement of the mass flow rate threshold for unstart was observed in the presence of heat release by combustion. The observed transient and quasi-steady behaviours of the unstart shockwave system and the jet motion were similar in all of the test conditions. On the other hand, at the lip of inlet model, the unstart shockwave under the cold free stream condition exhibited a relatively steady behaviour while severe oscillatory flow motions of the jet and the unstart shockwave were observed in the combustion-driven unstart process. The different unstarted flow behaviours between the three flow conditions were explained using a simplified one-dimensional flow choking analysis and use of the Korkegi criterion.


Author(s):  
Koichiro Ogata ◽  
Sumito Yamashita ◽  
Tomoya Hirose

This study experimentally examined the dense phase pneumatic conveying in a horizontal rectangular channel using the fluidizing air. The powder used is PVC belong to Geldart A particle, where the mean diameter is 151μm, the particle density is 1382kg/m3 and the minimum fluidizing velocity is 9.0mm/s. As the experimental conditions, the fluidizing velocity at the bottom of a vessel and the horizontal channel has been changed. Also, the mass of transported powder, the supply air pressure and the height of powder bed inside a vessel were measured. In the case of PVC, we confirmed the flow characteristics of the powder conveying and air pressure. Further, we found that the fluidizing air to the bottom of a vessel was required to the powder conveying of this system, and that the fluidizing velocity at the horizontal channel needs to be larger than the minimum fluidizing velocity. These results were also obtained on the previous study when two kinds of glass bead was used. The mass flow rate and solid loading ratio were estimated by the measured data of the mass of transported powder. In addition, these results were compared with the conveying characteristic of two kinds of glass beads belongs to Geldart A and B particle. As a result, the mass flow rate and solid loading ratio of PVC were smaller than that of two kinds of glass beads.


Sign in / Sign up

Export Citation Format

Share Document