Mixed Convection in Vertical Tubes: High Reynolds Number

Author(s):  
LiDong Huang ◽  
Kevin J. Farrell

The complex interaction of forced and natural convection depends on flow regime and flow direction. Aiding flow occurs when both driving forces act in the same direction (heating upflow fluid and cooling downflow fluid); opposing flow occurs when they act in different directions (cooling upflow fluid and heating downflow fluid). This paper discusses the buoyancy effect on forced convection for single-phase flows in vertical tubes. To evaluate mixed convection methods, Heat Transfer Research, Inc. (HTRI) recently collected water and propylene glycol data in two vertical tubes of different tube diameters. The data cover wide ranges of Reynolds, Grashof, and Prandtl numbers and differing ratios of heated tube length to diameter in laminar, transition, and turbulent forced flow regimes. In this paper, we focus on mixed convection with Reynolds numbers higher than 2000. Using HTRI data and experimental data in literature, we demonstrate that natural convection can greatly increase or decrease the convective heat transfer coefficient. In addition, we establish that natural convection should not be neglected if the Richardson number is higher than 0.01 or the mixed turbulent parameter Ra1/3/(Re0.8 Pr0.4) is higher than 0.05 even in forced turbulent flow with Reynolds numbers greater than 10000. High resolution Reynolds-Averaged Navier-Stokes (RANS) simulations of several experimental conditions confirm the importance of the buoyancy effect on the production of turbulence kinetic energy. We also determine that flow regime maps are required to predict the mixed convection heat transfer coefficient accurately.

Author(s):  
LiDong Huang ◽  
Kevin J. Farrell

The complex interaction of forced and natural convections depends on flow regime and flow direction. Aiding flow occurs when both driving forces act in the same direction (heating upflow fluid and cooling downflow fluid), opposing flow occurs when they act in different directions (cooling upflow fluid and heating downflow fluid). To evaluate mixed convection methods, Heat Transfer Research, Inc. (HTRI) recently collected water and propylene glycol data in two vertical tubes of different tube diameters. The data cover wide ranges of Reynolds, Grashof, and Prandtl numbers and differing ratios of heated tube length to diameter in laminar, transition, and turbulent forced flow regimes. In this paper, we focus the buoyancy effect on forced convection of single-phase flows in vertical tubes with Reynolds numbers higher than 2000. Using HTRI data and experimental data in literature, we demonstrate that natural convection can greatly increase or decrease the convective heat transfer coefficient. In addition, we establish that natural convection should not be neglected if the Richardson number is higher than 0.01 or the mixed turbulent parameter Ra1/3/(Re0.8 Pr0.4) is higher than 0.05 even in forced turbulent flow with Reynolds numbers greater than 10,000. High resolution Reynolds-averaged Navier–Stokes simulations of several experimental conditions confirm the importance of the buoyancy effect on the production of turbulence kinetic energy. We also determine that flow regime maps are required to predict the mixed convection heat transfer coefficient accurately.


2021 ◽  
Vol 9 (11) ◽  
pp. 302-312
Author(s):  
Md. Aamir Sohail ◽  
◽  
Ravi Kulkarni H. ◽  
P. Rathnakumar ◽  
Faheem Akthar ◽  
...  

Natural convection flow in a vertical channel containing inside objects exists in a number of advance technological applications, including heat transfer from electronic circuits, refrigerators, heat exchangers, power station, fueling components, chillers, and residential ventilation, etc. In this thesis the model is created in CREO, and then imported into ANSYS to simulate air flow through vertical thin plates. The focus of the thesis will be on thermal and CFD modeling of vertical thin plates with variable Reynolds numbers (2×106& 4×106) and at angles (0°,30°&60°) respectively. Thermal analysis was performed on vertical thin narrow plates made up of steel, aluminium, and copper at various heat transfer coefficient rates.Modeling and analysis of the narrow vertical plate is demonstrated utilising the data books details and design formulary.CFD analysis results tabulated at different Reynolds number, pressure, velocity, heat transfer coefficient, mass flow rate and heat transfer and also which is drawn into graphical representation.3D modelling was done in the parametric application Pro-Engineer, and analysis is performed in ANSYS.


1987 ◽  
Vol 109 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J. W. Baughn ◽  
H. Iacovides ◽  
D. C. Jackson ◽  
B. E. Launder

The paper reports extensive connective heat transfer data for turbulent flow of air around a U-bend with a ratio of bend radius:pipe diameter of 3.375:1. Experiments cover Reynolds numbers from 2 × 104 to 1.1 × 105. Measurements of local heat transfer coefficient are made at six stations and at five circumferential positions at each station. At Re = 6 × 104 a detailed mapping of the temperature field within the air is made at the same stations. The experiment duplicates the flow configuration for which Azzola and Humphrey [3] have recently reported laser-Doppler measurements of the mean and turbulent velocity field. The measurements show a strong augmentation of heat transfer coefficient on the outside of the bend and relatively low levels on the inside associated with the combined effects of secondary flow and the amplification/suppression of turbulent mixing by streamline curvature. The peak level of Nu occurs halfway around the bend at which position the heat transfer coefficient on the outside is about three times that on the inside. Another feature of interest is that a strongly nonuniform Nu persists six diameters downstream of the bend even though secondary flow and streamline curvature are negligible there. At the entry to the bend there are signs of partial laminarization on the inside of the bend, an effect that is more pronounced at lower Reynolds numbers.


1987 ◽  
Vol 109 (2) ◽  
pp. 446-453 ◽  
Author(s):  
L. Neiswanger ◽  
G. A. Johnson ◽  
V. P. Carey

Measured local heat transfer data and the results of flow visualization studies are reported for cross-flow mixed convection in a rectangular enclosure with restricted inlet and outlet openings at high Rayleigh number. In this study, experiments using water as the test fluid were conducted in a small-scale test section with uniformly heated vertical side walls and an adiabatic top and bottom. As the flow rate through the enclosure increased, the enhancement of heat transfer, above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure. Mean heat transfer coefficients are also presented which were calculated by averaging the measured local values over the heated surface. A correlation for the mean heat transfer coefficient is also proposed which agrees very well with the experimentally determined values. A method of predicting the flow regime in this geometry for specified heating and flow conditions is also discussed.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 716
Author(s):  
Saulius Pakalka ◽  
Kęstutis Valančius ◽  
Giedrė Streckienė

Latent heat thermal energy storage systems allow storing large amounts of energy in relatively small volumes. Phase change materials (PCMs) are used as a latent heat storage medium. However, low thermal conductivity of most PCMs results in long melting (charging) and solidification (discharging) processes. This study focuses on the PCM melting process in a fin-and-tube type copper heat exchanger. The aim of this study is to define analytically natural convection heat transfer coefficient and compare the results with experimental data. The study shows how the local heat transfer coefficient changes in different areas of the heat exchanger and how it is affected by the choice of characteristic length and boundary conditions. It has been determined that applying the calculation method of the natural convection occurring in the channel leads to results that are closer to the experiment. Using this method, the average values of the heat transfer coefficient (have) during the entire charging process was obtained 68 W/m2K, compared to the experimental result have = 61 W/m2K. This is beneficial in the predesign stage of PCM-based thermal energy storage units.


Sign in / Sign up

Export Citation Format

Share Document