Stresses in Bearing Liner of Misaligned Hydrodynamically Lubricated Journal Bearings

Author(s):  
Abdallah A. Elsharkawy ◽  
Khaled J. Al-Fadhalah

A numerical study examined the combined effects of journal misalignment and hydrodynamic lubrication on the stress fields of bearing liner under steady state conditions. The oil pressure, obtained by solving Reynolds equation, is imposed on a finite element model of an elastic liner bearing to calculate its stress fields. It was found that large degree of misalignment increases remarkably the oil pressure, and consequently the stresses in the bearing liner become significantly higher.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
D. Souchet ◽  
A. Senouci ◽  
H. Zaidi ◽  
M. Amirat

In hydrodynamic lubrication, at very high rotational speed, the phenomenon of axial fluid leakage is often present. This can involve an increase of shear stress in the contact and consequently a considerable increase of the temperature. For that and in order to solve this problem, we took interest in the herringbone grooved journal bearings. The researches made before on these types of groove bearing have shown that they present a good dynamical behavior with a low eccentricity and a low axial flow. In this paper, a numerical study of a herringbone journal bearing operating behavior, under laminar and isothermal regime, is presented. The theoretical model, based on the classical Reynolds equation, is used. In order to include the film rupture and reformation, the Reynolds equation is modified using a mass conservative algorithm. To understand the behavior of these herringbone grooved journal bearings well, numerical modeling, using finite element method, has been developed. Various geometrical shapes of the herringbone grooved journal bearings have been analyzed, allowing us to limit the fluid leakage problem, by working particularly on the contact form.


Author(s):  
P. Y. P. Chen ◽  
E. J. Hahn

This paper demonstrates the suitability of using computational fluid dynamics software for solving steady state hydrodynamic lubrication problems pertaining to slider bearings, step bearings, journal bearings and squeeze-film dampers under conditions of constant unidirectional or rotating loading. The relevance of the inertia and viscous terms which are neglected in the derivation of the Reynolds equation are briefly investigated for the above bearing and damper configurations and it is shown that the neglected viscous terms have negligible effect whereas the inertia effect predictions agree reasonably well with those reported in the literature.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


Author(s):  
C. H. Venner

When numerical and experimental results are compared to validate elasto-hydrodynamic lubrication (EHL) models, it is of utmost importance that grid-converged results are used. In particular at low speeds and high loads, solutions obtained using grids that are not sufficiently dense will exhibit an artificial trend that does not represent the behaviour of the continuous modelling equations. As it coincides with a trend observed in experiments this may lead to the erroneous conclusion that the theoretical model on which the numerical simulations are based is accurate. This risk is illustrated in detail. It is further shown that EHL models based on the Reynolds equation in a steady state circular contact predicts a positive film thickness as long as the grid used in the calculations is sufficiently dense. This has significant implications for the validity of results obtained using mixed lubrication models based on a Reynolds model and a film thickness threshold.


2010 ◽  
Vol 297-301 ◽  
pp. 618-623 ◽  
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
Rachid Bennacer

In this work the influence of thermal effects on the performance of a finite porous journal bearing has been investigated using a thermo-hydrodynamic analysis. The Reynolds equation of thin viscous films is modified taking into account the oil leakage into the porous matrix, by applying Darcy’s law to determine the fluid flow in the porous media. The governing equations were solved numerically using the finite difference approach. Obtained result show a reduction in the performance of journal bearings when the thermal effects are accounted for and, this reduction is greater when the load capacity is significant.


1968 ◽  
Vol 10 (4) ◽  
pp. 363-366
Author(s):  
M. D. Wood

The note compares recently published versions of the governing gas film equations for slip-flow and turbulent flow with Reynolds equation for laminar flow. The comparison shows how approximate values of steady-state and dynamic performance parameters may be deduced for the new conditions from existing data.


Author(s):  
Shitendu Some ◽  
Sisir K Guha

A theoretical analysis of the steady-state characteristics of finite hydrostatic double-layered porous journal bearings dealing with the effects of slip flow at the fine porous layer–film interface and percolation of additives into pores under the coupled stress fluid lubrication is presented. Based on the Beavers–Joseph’s criterion for slip flow, the modified Reynolds equation applicable to finite porous journal bearings lubricated with coupled stress fluids have been derived. The governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation of polar additives of lubricant and the modified Reynolds equation are solved simultaneously using finite difference method satisfying appropriate boundary conditions to obtain the steady-state performance characteristics for various parameter namely percolation factor, slip coefficient, bearing feeding parameter, coupled stress parameter, and eccentricity ratio. The results are exhibited in the form of graphs, which may be useful for design of such bearing.


2011 ◽  
Vol 39 (1) ◽  
pp. 5-19 ◽  
Author(s):  
R. van der Steen ◽  
I. Lopez ◽  
H. Nijmeijer

Abstract Virtual testing is nowadays the standard in the design process of new tires. Besides modeling the static response of the tire itself, the dynamics of a rolling tire in contact with the road needs to be incorporated. Due to the uncontrollable environmental conditions and the complex structure of the tires, it is advantageous to use small-scale testing under more controlled conditions. Experimental characterization of frictional properties of rubber compounds is, however, limited due to the necessity of complex measurement systems. In this paper a commercially available laboratory abrasion and skid tester is used to ide.gify both friction and .giffness characteristics of the same rubber compound. The obtained friction properties are implemented in a finite element model of the setup, and different validation steps are presented. Finally, a steady-state transport approach is used to efficiently compute a steady-state solution, which is compared with the experimental results. The numerical results show a good qualitative agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document