Static characteristics of hydrostatic doubled-layered porous journal bearings with slip flow including additives percolation into pores under coupled stress lubrication

Author(s):  
Shitendu Some ◽  
Sisir K Guha

A theoretical analysis of the steady-state characteristics of finite hydrostatic double-layered porous journal bearings dealing with the effects of slip flow at the fine porous layer–film interface and percolation of additives into pores under the coupled stress fluid lubrication is presented. Based on the Beavers–Joseph’s criterion for slip flow, the modified Reynolds equation applicable to finite porous journal bearings lubricated with coupled stress fluids have been derived. The governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation of polar additives of lubricant and the modified Reynolds equation are solved simultaneously using finite difference method satisfying appropriate boundary conditions to obtain the steady-state performance characteristics for various parameter namely percolation factor, slip coefficient, bearing feeding parameter, coupled stress parameter, and eccentricity ratio. The results are exhibited in the form of graphs, which may be useful for design of such bearing.

Author(s):  
S. K. Guha ◽  
A. K. Chattopadhyay

The objective of the present investigation is to study theoretically, using the finite-difference techniques, the dynamic performance characteristics of finite-hydrodynamic porous journal bearings lubricated with coupled stress fluids. In the analysis based on the Stokes micro-continuum theory of the rheological effects of coupled stress fluids, a modified form of Reynolds equation governing the transient-state hydrodynamic film pressures in porous journal bearings with the effect of slip flow of coupled stress fluid as lubricant is obtained. Moreover, the tangential velocity slip at the surface of porous bush has been considered by using Beavers-Joseph criterion. Using the first-order perturbation of the modified Reynolds equation, the stability characteristics in terms of threshold stability parameter and whirl ratios are obtained for various parameters viz. permeability factor, slip coefficient, bearing feeding parameter, and eccentricity ratio. The results show that the coupled stress fluid exhibits better stability in comparison with Newtonian fluid.


1968 ◽  
Vol 10 (4) ◽  
pp. 363-366
Author(s):  
M. D. Wood

The note compares recently published versions of the governing gas film equations for slip-flow and turbulent flow with Reynolds equation for laminar flow. The comparison shows how approximate values of steady-state and dynamic performance parameters may be deduced for the new conditions from existing data.


Author(s):  
Dhanendra Dewangan ◽  
Mihir Sarangi

In this work, the numerical investigation is done for the steady-state performance of elliptical contacts lubricated with micropolar fluids. The Eringen’s micro-continuum theory is applied to deduce the modified Reynolds equation for micropolar fluids. The modified Reynolds equation is discretized by the finite difference technique and evaluated by a multigrid technique for finding the steady-state pressure distribution; simultaneously, the elasticity equation is solved with the multilevel multi-integration method. The numerical solution is achieved under isothermal conditions and considering the exponential variation of viscosity with pressure. The effect of micropolar parameters, i.e. nondimensional characteristics length defines the molecular length of the blended additives, and coupling number measures the coupling between the angular and linear momentum of molecules, and operating parameters are studied. Owing to the analysis, the pronounced effect of the micropolar parameters on the elastohydrodynamic lubrication of elliptical contacts is observed and which cannot be avoided. Lubricants added with solid additives and coupling between linear and angular momentum improved the overall film thickness and pressure and enhanced the load-carrying capacity. Also, a nominal rise in the traction coefficient is noticed, but this increase in the traction coefficient is quite less when compared to Newtonian fluids.


Author(s):  
Shitendu Some ◽  
Sisir K Guha

The aim of this paper is to address the effect of misalignment of the double-layered porous journal bearing on the steady-state performance analysis under coupled-stress lubrication with velocity phenomenon at the fine porous interface. Here, the misalignment caused by shaft displacement, e.g. axial (vertical displacement) and twisting (horizontal displacement) is considered. This analysis includes velocity slip phenomenon on the basis of Beavers-Joseph criteria. Moreover, the present analysis also focuses on the percolation effect of the additives into the pores of the porous layers. Steady-state film pressures are obtained by solving the modified Reynolds equation based on the coupled-stress lubrication theory. Under various parametric conditions, pressure profiles in the film region are discussed and demonstrated in the graphical form. Using these film pressure values, steady-state characteristics in terms of bearing load carrying capacity, attitude angle, frictional parameter, side leakage and misalignment moment are evaluated at various parametric conditions and represented in the graphical form.


1984 ◽  
Vol 106 (4) ◽  
pp. 484-491 ◽  
Author(s):  
M. Malik ◽  
Cz. M. Rodkiewicz

A modified form of Reynolds equation is derived for the compressible lubrication of porous bearings. The analysis takes into account two kinds of nonadherence conditions on the sliding surfaces, namely, the slip flow under the influence of molecular mean free path and the slip flow at gas film-porous shell interface. Numerical results are presented to illustrate the relative effects of the two kinds of slip flow conditions on static characteristics of self acting journal bearings.


1984 ◽  
Vol 106 (3) ◽  
pp. 322-328 ◽  
Author(s):  
K. C. Singh ◽  
N. S. Rao ◽  
B. C. Majumdar

A theoretical analysis is presented to predict the steady state performance characteristics of externally pressurized rotating gas journal bearings incorporating the effect of velocity slip at the porous interface. The governing equation for flow in the porous media and the modified Reynolds equation derived from the Navier-Stokes equations satisfying the velocity slip boundary condition, are solved simultaneously for film pressure distribution. Due to the nonlinearity of modified Reynolds equation the solution is obtained by perturbation method using finite difference technique. The dimensionless load capacity, attitude angle and mass rate of flow are computed numerically for different operating parameters. The effect of slip on the static characteristic is discussed. Comparison of the results with similar available solution for the no-slip case shows good agreement.


1984 ◽  
Vol 106 (1) ◽  
pp. 156-162 ◽  
Author(s):  
K. C. Singh ◽  
N. S. Rao ◽  
B. C. Majumdar

A theoretical solution is presented to predict the steady-state performance characteristics of aerostatic porous journal bearings of finite thickness considering three dimensional flow in the porous media. The analysis takes into account the velocity slip at the film bearing interface by using Beavers-Joseph criterion. Results are presented in dimensionless form for load capacity and mass rate of flow for different operating conditions and bearing dimensions. Solution is also obtained for modified slip velocity conditions and both the results are compared. It is observed that there is no agreement between two models except for few values of slip parameters. Hence, it is preferable to use the Beavers-Joseph model in order to account for all values of slip parameters. The effect of slip velocity on the static characteristics is discussed.


Author(s):  
R Haque ◽  
S K Guha

The objective of the present article is to theoretically investigate the static performance characteristics of rough porous hydrodynamic journal bearings of finite width with the effect of slip flow at the porous-film interface on the basis of the Beavers-Joseph criterion. In the analysis, the roughness is uniformly distributed over the bearing surfaces, with no preferred position or direction in the surface. With the concept of a stochastic process for the isotropic roughness patterns, the steady-state performance characteristics in terms of load capacity, end flowrate, and frictional parameters are obtained at different parameters of practical importance by solving simultaneously the continuity equation of flow in the porous bush and the Reynolds-type equation using the finite difference techniques. According to the results obtained, this analysis reveals that the influence of roughness on the steady-state performance of the journal bearing is physically apparent and not negligible.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


Sign in / Sign up

Export Citation Format

Share Document