scholarly journals Ultrasonic Measurement for Film Thickness and Solid Contact in Elastohydrodynamic Lubrication

Author(s):  
R. S. Dwyer-Joyce ◽  
J. Zhu ◽  
T. Reddyhoff

The reflection of ultrasound can be used to determine oil film thickness from the stiffness of the separating film. However, boundary or mixed film lubrication is a common occurrence in elastohydrodynamic lubricated (EHL) contacts, as the nominal thickness of the separating film approaches the surface asperity height. In this paper an ultrasonic investigation was carried out on the interface between a steel ball sliding on a flat disc as the speed was reduced into the boundary regime. The ultrasonic reflection then depends on the stiffness of the interface that now consists of an oil layer and asperity contacts. To distinguish the stiffness contribution from asperity contact and oil layer, a mixed lubrication model for circular contacts was established. This predicted the lubricant film thickness and proportions of solid and liquid mediated contact. The total stiffness predicted by theoretical models showed a good agreement with experimental measurement for kinematic cases. The model can then be used to extract the proportion of real area of contact, and the oil film thickness, from ultrasonic results.

Author(s):  
G Karami ◽  
H P Evans ◽  
R W Snidle

The paper describes an isothermal elastohydrodynamic lubrication analysis of rollers having circumferential sinusoidal roughness. Theoretical results are shown which demonstrate the influence of roughness amplitude on the distribution of hydrodynamic pressure and film thickness at constant load and constant roughness wavelength. At a large roughness amplitude the hydrodynamic pressure in the valleys between asperity contacts is insignificant and each asperity contact behaves as an ‘isolated’ elastohydrodynamic point contact. As the roughness is reduced, however, the valley pressures build up, the pressure becomes more uniformly distributed in the axial direction and the minimum film thickness increases.


Author(s):  
Gong Cheng ◽  
Ke Xiao ◽  
Jiaxu Wang

The contact properties of an interface are crucial to the performance of equipment, and it is necessary to study the contact damping and contact stiffness, especially in the case of mixed lubrication. A calculation model for contact damping and contact stiffness considering lubrication was proposed on the basis of the KE contact model and mixed elastohydrodynamic lubrication theory. Both the damping and the stiffness were composed of the oil film portion and the asperity contact portion. Since the damping and the stiffness of oil film mainly depended on the film thickness and the pressure, which can be obtained with the mixed lubrication model, another crucial point was to figure out the contribution of asperity contact. Ignoring the effect of the tangential deformation, the stiffness and the load determined with the normal deformation of the asperity were obtained. Then, the contact damping and the contact stiffness considering lubrication could be derived. Finally, the model was applied to the study of contact damping and stiffness of the involute spur gear.


Author(s):  
Xinxiao Bian ◽  
Quan Wang

The surface quality of cold rolled strip is related to a greater extent on the rolling oil film thickness, and there are many factors that affect the oil film thickness. Considering the various factors comprehensively, an integrated mathematical model is established, such as roughness of rolls and strips, elastohydrodynamic lubrication, friction heat and plastic deformation heat in the rolling zone, viscosity varying with temperature and pressure, etc. A series of equations are developed, such as the Reynolds equation of partial membrane hydrodynamic lubrication based on average flow theory, equation of oil film thickness on rough elastic surface, the thermal interface equations between strip, oil film and roller surface, surface asperity contact pressure equation, lubricant viscosity and density equations, motion equation of the oil film, etc. This model is solved by finite difference method to get the film pressure, oil film thickness, and temperature distribution in the rolling zone. The average rolling pressure, the roll, and strip temperature calculated by the model are very close to the field test results. Comparing the minimum film thickness calculated by the model with the regression formula of other literature test, the error is less than 10%. The minimum oil film thickness is analyzed. It increases with the decrease of the rolling force and is approximately proportional to the rolling speed and lubricant viscosity.


Author(s):  
Zhihe Duan ◽  
Tonghai Wu

A line contact tribo-pair is a key mechanism unit in rolling bearings, which is often characterized by ultra-high contact pressure and ultra-thin oil film. Elastohydrodynamic lubrication is often adopted to characterize the lubrication state of such a tribo-pair. As a primary parameter for elastohydrodynamic lubrication, the oil film thickness is often evaluated with simplified theoretical models or complicated measurements. So far, a comprehensive verification of the lubrication states in a real line-contact tribo-pair, however, is rarely reported. Focusing on the roller/ring tribo-pair of a wet-lubricated rolling bearing under pure rolling conditions, this study investigates the lubrication states by integrating multiple theories. Five regions including isoviscous hydrodynamic, piezoviscous hydrodynamic, elastohydrodynamic lubrication, mixture lubrication, and boundary lubrication regions can be identified using the framework. Then, validation experiments are carried out on a line contact tribo-pair test rig under the same operating conditions applied in the theoretical analysis. The oil film thickness is measured by the ultrasonic method. The analysis results demonstrate that only two regions, the elastohydrodynamic lubrication and mixture lubrication regions, can be identified using the experimental data. The identified elastohydrodynamic lubrication and mixture lubrication regions are consistent with theoretical analysis; and the Blok equation and elastohydrodynamic lubrication theory are suggested to calculate the oil film thickness in the elastohydrodynamic lubrication and mixture lubrication regions, respectively. Moreover, the oil film thickness calculated by the Dowson equation is larger than that based on the elastohydrodynamic lubrication theory due to a different viscous pressure equation.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


2019 ◽  
Vol 71 (9) ◽  
pp. 1080-1085 ◽  
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Yi Liu ◽  
Longjie Dai ◽  
Zhaohua Shang

Purpose The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive. Design/methodology/approach In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations. Findings It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”. Research limitations/implications The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems. Originality/value The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.


Author(s):  
Eduardo Tomanik ◽  
Andre´ Ferrarese

A computer model that addresses the wear behavior by calculating hydrodynamic and asperity contact pressures was used to optimize the running face of three-piece oil control rings. The model incorporates Reynolds equation to calculate the oil film thickness for two sliding surfaces under a given condition (profile and topography of the surfaces, load, speed, lubricant viscosity grade and operation temperature). Prediction of the resultant asperity contact pressures is made by Greenwood-Williamson model. More scraping ring rail profiles are better for oil control, but present more wear due to higher asperity contact pressures. This higher wear can lead to less scraping profile, increasing ring end gap and lower ring tangential load, which deteriorates long term oil consumption control, hence engine durability. In the present work, a relatively simple computer program was used to predict lube oil film thickness and wear for different rail running profiles. Ring wear was assumed to be proportional to the calculated asperity contact pressure. Different rail profiles where the running profiles had a flat portion varying from less than 0.10 mm to higher than 0.20 mm were simulated and then tested in a bench test consisting in an electrical motored engine. Except for the combustion absence, all other engine characteristics were preserved (e.g., stroke, piston-ring pack, lubrication system) in the bench test. The measured oil control ring wear correlated very well with the predicted one. The model allowed the numerical optimization of the running profile of ring rail, which has lower asperity contact pressure, hence wear, but still has a good scraping capability. Two actual ICE tests were also realized. The predicted lower wear of the optimized profile was experimentally confirmed and no differences on LOC were found.


Author(s):  
Qin Xie ◽  
Geng Liu ◽  
Tianxiang Liu ◽  
Ruiting Tong ◽  
Quanren Zeng

An elasto-plastic asperity contact model for layered media is developed in the work reported in this paper to analyze the influences of coating-substrate materials on contact when yielding and the strain-hardening properties of materials are taken into account. The finite element method, the initial stiffness method and the mathematical programming technique are employed to solve the model. The von Mises yield criterion is used to determine the inception of plastic deformation. The effects of different layer thickness and different coating-substrate materials on the contact pressure, real area of contact, average gap of rough surface, and stresses in layer and substrate under the elastic-perfectly-plastic and the elasto-plastic contact conditions are numerically investigated and discussed.


1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document