Delivery of Plasmid DNA Through Intratumoral Infusion and Electroporation

2000 ◽  
Author(s):  
Fan Yuan ◽  
David Zaharoff ◽  
Xiao-Yu Zhang ◽  
Frank Lohr ◽  
Mark W. Dewhirst ◽  
...  

Abstract We investigated DNA transport in the interstitial space and across cell membrane facilitated by intratumoral infusion and in vivo electroporation, respectively. In the study, a rat fibrosarcoma was perfused ex vivo, and apparent hydraulic conductivity (Kapp) was quantified under different perfusion conditions. In addition, three plasmid DNA vectors were infused into solid tumors. Immediately after infusion, tumors were treated with or without electric pulses. Gene expression and tumor growth delay were determined at different time points after electroporation. We found that Kapp was very sensitive to the perfusion pressure, presumably due to perfusion-induced tissue deformation. Treatment of tumors with electric pulse facilitated gene expression in vivo. The growth of tumors treated with plasmid DNA encoding interleukin 12 (IL-12) and electric pulses was slower than those treated with IL-12 or electric pulses alone. These data suggest that gene delivery in solid tumors could be improved significantly through combination of intratumoral infusion and in vivo electroporation.

2000 ◽  
Author(s):  
Fan Yuan ◽  
David Zaharoff ◽  
Xiao-Yu Zhang ◽  
Frank Lohr ◽  
Mark W. Dewhirst ◽  
...  

Abstract We investigated DNA transport in the interstitial space and across cell membrane facilitated by intratumoral infusion and in vivo electroporation, respectively. In the study, a rat fibrosarcoma was perfused ex vivo, and apparent hydraulic conductivity (Kapp) was quantified under different perfusion conditions. In addition, three plasmid DNA vectors were infused into solid tumors. Immediately after infusion, tumors were treated with or without electric pulses. Gene expression and tumor growth delay were determined at different time points after electroporation. We found that Kapp was very sensitive to the perfusion pressure, presumably due to perfusion-induced tissue deformation. Treatment of tumors with electric pulse facilitated gene expression in vivo. The growth of tumors treated with plasmid DNA encoding interleukin 12 (IL-12) and electric pulses was slower than those treated with IL-12 or electric pulses alone. These data suggest that gene delivery in solid tumors could be improved significantly through combination of intratumoral infusion and in vivo electroporation.


2002 ◽  
Vol 1 (5) ◽  
pp. 317-318 ◽  
Author(s):  
Richard Heller

This special issue of Technology in Cancer Research and Treatment focuses on the versatility of electroporation. Contributed papers report on the basic mechanisms as well as the use of this procedure ex vivo and in vivo. In addition, recent studies utilizing in vivo electroporation for plasmid DNA and drug delivery are presented.


2014 ◽  
Vol 13 (1) ◽  
pp. 1270-1277 ◽  
Author(s):  
C.Q. Yang ◽  
X.Y. Li ◽  
Q. Li ◽  
S.L. Fu ◽  
H. Li ◽  
...  

2021 ◽  
pp. 2004149
Author(s):  
Sara Rolandsson Enes ◽  
Thomas H. Hampton ◽  
Jayita Barua ◽  
David H. McKenna ◽  
Claudia C. dos Santos ◽  
...  

BackgroundDespite increased interest in MSC-based cell therapies for the acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and understanding of the potential in vivo mechanisms of MSC actions in ARDS remain limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation, and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined.AimTo comparatively assess how the inflammatory environment present in ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviors.MethodsClinical grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties including viability, levels of expression of inflammatory cytokines, gene expression, cell surface HLA expression, and activation of coagulation and complement pathways.ResultsPro-inflammatory, pro-coagulant, and major histocompatibility complex (self recognition) related gene expression was markedly up-regulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. In contrast, these changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples.ConclusionThese data provide new insights into how hMSCs behave in healthy versus inflamed lung environments strongly suggesting that the inflamed environment in ARDS induces hMSC responses potentially benefical for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Liang Du ◽  
Jingwan Zhang ◽  
Alexander Clowes ◽  
David Dichek

Background Autogenous vein grafts are effective therapies for obstructive arterial disease. However, their long-term utility is limited by stenosis and occlusion. Genetic engineering of veins that prevents intimal hyperplasia and atherosclerosis could significantly improve the clinical utility of vein grafts. We recently reported that a helper-dependent adenoviral vector (HDAd) reduces atherosclerosis 4 wks after gene transfer in fat-fed rabbits and can express a therapeutic transgene (apo AI) in normal rabbit carotids for at least 48 wks. Use of HDAd for vein graft gene therapy will depend on achievement of similarly high and persistent transgene expression in grafted veins. Hypothesis We tested the hypothesis that Ad-mediated transgene expression in grafted veins (at an early time point) can be increased by varying the timing of gene transfer. Methods Rabbit external jugular veins were transduced by exposure to a beta galactosidase (b-gal)-expressing Ad: in situ either without (a) or with (b) immediate arterial grafting; c) ex vivo with grafting after overnight incubation with Ad; d) in vivo immediately after grafting and e) in vivo 4 wks after grafting (n = 6 - 19 veins/group). Transgene expression was measured in veins removed 3 d after Ad exposure by PCR quantitation of b-gal mRNA and by en-face planimetry of blue-stained area. Results B-gal transgene expression was higher in ungrafted veins than in veins grafted immediately after gene transfer (84 ± 17 vs 9.4 ± 2.0 arbitrary units (AU); P < 0.0001). Overnight incubation of veins with Ad increased gene expression ex vivo by 10-fold but neither this nor performing vector infusion immediately after grafting improved gene expression (11 ± 4.7 and 9.1 ± 1.8 AU; P > 0.9 for both vs immediately grafted veins). Delaying gene transfer until 4 wks after grafting significantly increased gene expression, to a level equivalent to transgene expression in ungrafted veins (61 ± 11 AU; P = 0.3 vs ungrafted veins). En face planimetry yielded similar results. Conclusions Exposure of a transduced vein to arterial blood flow is associated with significant loss of transgene expression. Transgene expression in grafted veins is significantly higher when gene transfer is performed 4 wks after exposure of the vein to arterial blood flow.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Syahril Abdullah ◽  
Wai Yeng Wendy-Yeo ◽  
Hossein Hosseinkhani ◽  
Mohsen Hosseinkhani ◽  
Ehab Masrawa ◽  
...  

A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines andin vivothrough systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery.In vitrostudies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.


Vaccine ◽  
2010 ◽  
Vol 28 (50) ◽  
pp. 7852-7864 ◽  
Author(s):  
Christine M. Barbon ◽  
Lisa Baker ◽  
Christa Lajoie ◽  
Urban Ramstedt ◽  
Mary Lynne Hedley ◽  
...  

genesis ◽  
2003 ◽  
Vol 35 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Masahiro Sato ◽  
Maya Tanigawa ◽  
Natsuko Kikuchi ◽  
Shingo Nakamura ◽  
Minoru Kimura

2020 ◽  
Vol 21 (18) ◽  
pp. 6494
Author(s):  
Enrico P. Spugnini ◽  
Manuel Scimeca ◽  
Bruno Amadio ◽  
Giancarlo Cortese ◽  
Maurizio Fanciulli ◽  
...  

We describe an original electroporation protocol for in vivo plasmid DNA transfection. The right hind limbs of C57 mice are exposed to a specifically designed train of permeabilizing electric pulses by transcutaneous application of tailored needle electrodes, immediately after the injection of pEGFP-C1 plasmid encoding GFP (Green Fluorescente Protein). The electroporated rodents show a greater GFP expression than the controls at three different time points (4, 10, and 15 days). The electroporated muscles display only mild interstitial myositis, with a significant increase in inflammatory cell infiltrates. Finally, mild gait abnormalities are registered in electroporated mice only in the first 48 h after the treatment. This protocol has proven to be highly efficient in terms of expression levels of the construct, is easy to apply since it does not require surgical exposure of the muscle and is well tolerated by the animals because it does not cause evident morphological and functional damage to the electroporated muscle.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2360-2360
Author(s):  
Agata A Filip ◽  
Dorota Koczkodaj ◽  
Tomasz Kubiatowski ◽  
Ewa Wasik-Szczepanek ◽  
Anna Dmoszynska

Abstract Abstract 2360 Poster Board II-337 Introduction: Despite their longevity in vivo, CLL lymphocytes die rapidly when put to in vitro cultures, what proves that the resistance to apoptosis is not an intrinsic feature of leukemic cells, but depends on environmental signals. Recently it was shown that mononuclear cells from peripheral blood of CLL patients differentiate in vitro into large, adherent cells that grow in close contact with CLL lymphocytes. They were termed “nurselike cells” (NLCs), because they support leukemic lymphocyte survival in culture. The presence of the cells morphologically and phenotypically similar to NLCs was demonstrated in peripheral lymphatic organs of CLL patients. It may suggest their role in CLL lymphocytes protection in vivo and, as a consequence, point the new target in CLL treatment. Patients and Methods: The study included the group of 65 previously untreated CLL patients, 24 women and 41 men, aged from 36 to 86 yrs. 12 patients (18%) were diagnosed with stage 0 according to Rai, 15 patients (23%) with stage I, 30 patients (46%) with stage II, 5 patients (8%) with stage III and 3 patients (5%) with stage IV. Peripheral blood lymphocytes ex vivo were examined for CD14, CD38, BCL2 and ZAP70 expression by flow cytometry and for BCL2, SURVIVIN and ZAP70 gene expression by RT-PCR. TP53 gene status was assessed by FISH. Lymphocytes of 20 patients were assayed for apoptosis-related gene expression by means of cDNA macroarrays (Clontech). To generate NLCs, PB leukemic cells were cultured in vitro for 14 days on standard medium (RPMI 1640 with L-glutamine, 15% FCS, antibiotics/antimycotics; cell density 3 × 106/ml) and the outgrowth and number of NLCs was assessed in relation to clinical and hematological parameters. NLCs were identified morphologically and by CD31/VIMENTIN protein expression. Results: In 58 cases (89%) the outgrowth of NLCs was observed, while their number differed in cultures of the cells of different patients: in 49 cultures (84.5%) there were over 20 NLCs/mm2 (up to 52 NLCs/mm2), and in 9 cases (15.5%) less than 20 NLCs/mm2. Positive correlation was shown between NLC number and B2M serum level (p=0.044) and absolute monocyte count (p=0.019). Significantly higher NLC number was observed in case of patients with higher CD14+ cell number (p<0.0001) and higher SURVIVIN gene expression assessed by RT-PCR (p<0.0001) and macroarrays (p=0.013). We found no statistically significant relation of NLCs number and: the Rai stage of the disease, WBC, lymphocyte count, LDH serum level, BCL2, CD38 and ZAP70 expression and TP53 gene status. During the follow-up period of 6 years we observed the tendency for longer overall survival in patients that produce less than 20 NLCs/mm2 (fig. 1), but it was not statistically significant. Conclusions: The number of NLC cells obtained in vitro from PBL of CLL patients correlates with B2M serum level and SURVIVIN gene expression in CLL cells ex vivo. High B2M level is a marker of poor prognosis. SURVIVIN represents a family of IAP (Inhibitor of APoptosis) proteins. While rare in PBL of CLL patients, its expression is typical for proliferating leukemic cells pool in pseudofollicle microenvironment. SURVIVIN inhibits apoptosis by blocking caspase-3 and -7. Considering the protective role of NLC cells towards CLL lymphocytes in vitro, these results altogether with observed tendency to shorter survival of patients generating high NLCs number may prove the presence of supportive mechanisms exerted by NLCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document