High Temperature Supersonic Jet Facility for Aeroacoustic Studies

Author(s):  
Brenton J. Greska ◽  
Anjaneyulu Krothapalli

Abstract This paper describes a newly built experimental facility at the Florida State University to develop innovative technologies for the noise suppression and mixing control of high-speed jets. This facility is capable of generating jet flows up to a maximum jet exit Mach number of about 2.5 at stagnation temperatures reaching up to 1500K. The facility can accommodate nozzles having an exit diameter of about 80 mm. At the maximum operating conditions, the jet can be run continuously for about 15 minutes. The jet exhausts into an anechoic room that measures 5.2 m (width) × 5.8 m (length) × 4 m (height). A sudden expansion (SUE) burner using Ethylene as its fuel is used to heat the high-pressure air. The instrumentation includes: High Resolution Infrared camera, stereoscopic Particle Image Velocimetry and Laser Speckle Displacement method for flow field measurements, high temperature unsteady pressure probes for the measurement of pressure fluctuations in the hydrodynamic field, and microphones with high speed data acquisition for far-field narrow band sound measurements.

2004 ◽  
Vol 126 (5) ◽  
pp. 844-850 ◽  
Author(s):  
Khaled S. Abdol-Hamid ◽  
S. Paul Pao ◽  
Steven J. Massey ◽  
Alaa Elmiligui

It is well known that the two-equation turbulence models under-predict mixing in the shear layer for high temperature jet flows. These turbulence models were developed and calibrated for room temperature, low Mach number, and plane mixing layer flows. In the present study, four existing modifications to the two-equation turbulence model are implemented in PAB3D and their effect is assessed for high temperature jet flows. In addition, a new temperature gradient correction to the eddy viscosity term is tested and calibrated. The new model was found to be in the best agreement with experimental data for subsonic and supersonic jet flows at both low and high temperatures.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


AIAA Journal ◽  
1978 ◽  
Vol 16 (3) ◽  
pp. 268-270 ◽  
Author(s):  
D.S. Dosanjh ◽  
P.K. Bhutiani ◽  
K.K. Ahuja

2016 ◽  
Vol 16 (1-2) ◽  
pp. 21-43 ◽  
Author(s):  
Russell W Powers ◽  
Dennis K McLaughlin

Increasingly powerful and noisy military aircraft have generated the need for research leading to the development of supersonic jet noise reduction devices. The hot, high speed supersonic jets exhausting from military aircraft during takeoff present a most challenging problem. The present study extends prior research on two methods of noise reduction. The first is the internal nozzle corrugations pioneered by Seiner et al. and the second is the beveled exit plane explored most recently by Viswanathan. A novel research idea of creating fluidic corrugations similar to the nozzle corrugations has been initiated by Penn State. To further the understanding and analysis of the fluidic corrugations, the present study focuses on the flow field and acoustic field of nozzles with two, three, and six conventional, hardwalled corrugations. The effect of the combination of the internal corrugations with a beveled nozzle is explored. The results show that significant noise reductions of over 3 dB of the mixing noise and the broadband shock-associated noise can be achieved. The combination of the beveled nozzle and the internal nozzle corrugations showed that there is less azimuthal dependence of the acoustic field than for the purely beveled nozzle. The combination nozzle was shown to reduce the noise over a wider range of polar angles and operating conditions than either the purely beveled nozzle or the purely corrugated nozzle.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Xueqing Zhang ◽  
Qinghua Chen ◽  
Juanfang Liu

High-speed micro-gas journal bearing is one of the essential components of micro-gas turbines. As for the operating conditions of bearings, the high-speed, high-temperature, ultra-high temperature difference along the axial direction and the species of gaseous lubricants are extremely essential to be taken into account, and the effects of these factors are examined in this paper. The first-order modified Reynolds equation including the thermal creep, which results from the extremely large temperature gradient along the axial direction, is first derived and coupled with the simplified energy equation to investigate the steady hydrodynamic characteristics of the micro-gas bearings. Under the isothermal condition, it is found that CO2 can not only improve the stability of bearings but also generate a relatively higher load capacity by some comparisons. Thus, CO2 is chosen as the lubricant to further explore the influence of thermal creep. As the rotation speed and eccentricity ratio change, the thermal creep hardly has any effect on the gas film pressure. However, the shorter bearing length can augment the thermal creep. Compared with the cases without the thermal creep, the thermal creep could remarkably destroy the stability of gas bearing, but it might slightly enhance the load capacity.


Author(s):  
Hooshang Heshmat ◽  
Piotr Hryniewicz ◽  
James F. Walton ◽  
John P. Willis ◽  
Said Jahanmir

Compliant foil bearings offer many advantages over rolling element bearings in high-speed and high-temperature applications. However, implementation of foil bearings in these applications requires development of solid lubricant coatings that can survive the severe operating conditions encountered at high speeds and high temperatures. The objective of this paper is to present results on development of an advanced coating system for use with compliant foil bearings that permits higher operating speeds and temperatures. In order to evaluate the coating performance and to select the best coating combination for implementation, a number tests were conducted using a high-temperature, high-speed tribometer up to 810 °C. Inconel test substrates, representative of a portion of a foil bearing, were coated with several different Korolon™ coatings. The counterface disks were coated with four different hard coatings. The test results confirmed the excellent tribological behavior of Korolon™ coatings for high-speed high-temperature foil bearing applications. While the tribological behavior of Korolon™ coatings were determined to be a function of temperature, in most cases a maximum coefficient of friction less than 0.1 was observed during startup/shutdown periods. Subsequently, a foil journal bearing was designed and a composite Korolon™ coating was applied to the bearing top foil; and a dense chrome coating was applied to the journal surface. The foil bearing was installed in a turbojet engine and operated successfully to 54,000 rpm for over 70 start-stop cycles.


Author(s):  
Margaret P. Proctor ◽  
Irebert R. Delgado

Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufactures’ concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 °F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).


Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for RANS equations based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique is given. The presented time mean fields, as well as total turbulence data demonstrate with an average deviation of ΔTu < 0.4% and ΔC/Cref < 0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


2016 ◽  
Vol 821 ◽  
pp. 229-234 ◽  
Author(s):  
Jiří Knotek ◽  
Pavel Novotný ◽  
Ondřej Maršálek

The turbocharger is a unique example of the rotating machinery. Not only for its very high speed, but also because of its compact design and difficult operating conditions (i.e. high temperature, harsh vibrations, etc.). Moreover, measuring of most parameters characterizing the rotor dynamics is a very difficult task. Thus, it is advantageous to replace the real turbocharger by computational model and determine the turbocharger rotor dynamics using simulation tool. The development of such tool will be presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document