scholarly journals Discrete Characterization of Cohesion in Gas-Solid Flows

Author(s):  
Kunal Jain ◽  
J. J. McCarthy

Cohesive forces between grains can arise from a variety of sources – such as liquid bridge (capillary) forces, van der Waals forces, or electrostatic forces – and may play a significant role in the processing of fine and/or moist powders. While recent advances have been made in our understanding of liquid-induced cohesion at the macroscopic level, in general, it is still not possible to directly connect this macroscopic understanding of cohesion with a microscopic picture of the particle properties and interaction forces. In fact, conventional theories make no attempt to distinguish between these modes of cohesion, despite clear qualitative differences (lubrication forces in wet systems or electrostatic repulsion are two good examples). In this work, we discuss several discrete characterization tools for wet (cohesive) granular material with simple, physically relevant interpretations. We examine the utility of these tools, both computationally and experimentally, by exploring a range of cohesive strengths (from cohesionless to cohesive) in several prototypical applications of solid and gas-solid flows.

2020 ◽  
Vol 17 ◽  
Author(s):  
Biswajit Panda ◽  
Amal Kumar Gooyee

: Oceans can play a major role in supplying life-saving medicines in the world in future. Although considerable progress has been made in finding new medicines from marine sources, large efforts are still necessary to examine such molecules for clinical applications. Xyloketals are an important group of natural products with various powerful and prominent bioactivities such as inhibition of acetylcholine esterase, antioxidant activity, inhibition of L-calcium channels, radicalscavenging behavior, suppression of cell proliferation, reduction of neonatal hypoxic-ischemic brain injury, etc. This review describes the isolation and structural characterization of all xyloketal natural products giving major emphasis on their bioactivity.


Author(s):  
Bibian Bibeca Bumbila García ◽  
Hernán Andrés Cedeño Cedeño ◽  
Tatiana Moreira Chica ◽  
Yaritza Rossana Parrales Ríos

The objective of the work is to establish the characterization of the auditory disability and its relationship with resilience at the Technical University of Manabí. The article shows a conceptual analysis related to the inclusion and social integration of disabled students. Based on the fact that the person with disabilities grows and develops in the same way as that of people without disabilities and what usually happens is that disabled people are rejected and discriminated against based on a prefabricated and erroneous conceptualization of these people. The results associated with the application of the SV-RES test prepared by the researchers are shown (Saavedra & Villalta, 2008b). Characterization of the auditory deficit is made in the students, and the limitations that derive from it are pointed out. We analyze the particularities related to communication with students who have a hearing disability and resilience in this type of student, where some personal highlights that in this sense constitute an example of resilience. Finally, the results related to the study of the relationship between students' hearing disability and the level of resilience dimensions are shown.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olalekan A. Balogun-Agbaje ◽  
Olubusola A. Odeniyi ◽  
Michael A. Odeniyi

Abstract Background Poly-γ-glutamic acid (γ-PGA) is a biopolymer of microbial origin, consisting of repeating units of l-glutamic acid and/or D-glutamic acid. The biopolymer has found use in the fields of agriculture, food, wastewater, and medicine, owing to its non-toxic, biodegradable, and biocompatible properties. Due to its biodegradability, γ-PGA is being tipped to dislodge synthetic plastics in drug delivery application. High cost of production, relative to plastics, is however a clog in the wheel of achieving this. Main body of abstract This review looked at the production, nanoparticles fabrication, and drug delivery application of γ-PGA. γ-PGA production optimization by modifying the fermentation medium to tailor towards the production of desirable polymer at reduced cost and techniques for the formulation of γ-PGA nanoparticle as well as its characterization were discussed. This review also evaluated the application of γ-PGA and its nanoparticles in the delivery of drugs to action site. Characterization of γ-PGA and its nanoparticles is a crucial step towards determining the applicability of the biopolymer. γ-PGA has been used in the delivery of active agents to action sites. Conclusion This review highlights some of the efforts that have been made in the appraisal of γ-PGA and its nanoparticles for drug delivery. γ-PGA is a candidate for future extensive use in drug delivery.


Parasitology ◽  
2011 ◽  
Vol 139 (5) ◽  
pp. 651-668 ◽  
Author(s):  
S. BECKMANN ◽  
C. G. GREVELDING

SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 168-182 ◽  
Author(s):  
Robert R. Martin ◽  
Stuart MacFarlane ◽  
Sead Sabanadzovic ◽  
Diego Quito ◽  
Bindu Poudel ◽  
...  

Blackberry and raspberry are members of the family Rosaceae. They are classified in the genus Rubus, which comprises hundreds of species and has a center of origin in the Far East. Rubus is divided into 15 subgenera with blackberries classified in the Rubus (formerly Eubatus) and raspberries in the Idaeobatus subgenera. Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation, and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases, and phytoplasmas affecting Rubus spp. were reviewed more than 20 years ago. Since the last review on Rubus viruses, significant progress has been made in the molecular characterization of many of the viruses that infect Rubus spp. Currently, reverse transcription–polymerase chain reaction detection methods are available for most of the viruses known to infect Rubus. The goals of this article are to update the knowledge on previously characterized viruses of Rubus, highlight recently described viruses, review the virus-induced symptoms, describe the advances made in their detection, and discuss our knowledge about several virus complexes that cause serious diseases in Rubus. Virus complexes have been identified recently as the major cause of diseases in blackberries and raspberries.


1976 ◽  
Vol 22 (2) ◽  
pp. 303-324 ◽  
Author(s):  
P.R. Cook ◽  
I.A. Brazell ◽  
E. Jost

Structures resembling nuclei but depleted of protein may be released by gently lysing cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids sediment in gradients containing intercalating agents in a manner characteristic of DNA that is intact, supercoiled and circular. The concentration of salt present during isolation of human nucleoids affects their protein content. When made in I-95 M NaCl they lack histones and most of the proteins characteristic of chromatin; in 1-0 M NaCl they contain variable amounts of histones. The effects of various treatments on nucleoid integrity were investigated.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 487-488 ◽  
Author(s):  
Christian Woitzik ◽  
Mohsin Ali Chaudry ◽  
Peter Wriggers ◽  
Alexander Düster

2020 ◽  
Vol 85 (4) ◽  
pp. 795-798
Author(s):  
Brian Hayden

Megan Kassabaum has developed a useful approach for interpreting feasting remains, but its application to the Feltus site demonstrates that modifications need to be made. In particular, the characterization of competitive feasting is too simplistic, and her model does not include work types of feasts, which may be responsible for the remains at the Feltus site. The interpretation of feasting at the Feltus site as resulting from social solidarity needs of a dispersed egalitarian society appear questionable on the basis of a high incidence of special meat, the occurrence of smoking pipes, monumental architecture, and indications of possible human sacrifices.


Author(s):  
Anna Maria Ferrero ◽  
Alberto Godio ◽  
Maria Migliazza ◽  
Luigi Sambuelli ◽  
Andrea Segalini ◽  
...  

10.37236/1825 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaume Martí-Farré ◽  
Carles Padró

One of the main open problems in secret sharing is the characterization of the ideal access structures. This problem has been studied for several families of access structures with similar results. Namely, in all these families, the ideal access structures coincide with the vector space ones and, besides, the optimal information rate of a non-ideal access structure is at most $2/3$. An access structure is said to be $r$-homogeneous if there are exactly $r$ participants in every minimal qualified subset. A first approach to the characterization of the ideal $3$-homogeneous access structures is made in this paper. We show that the results in the previously studied families can not be directly generalized to this one. Nevertheless, we prove that the equivalences above apply to the family of the sparse $3$-homogeneous access structures, that is, those in which any subset of four participants contains at most two minimal qualified subsets. Besides, we give a complete description of the ideal sparse $3$-homogeneous access structures.


Sign in / Sign up

Export Citation Format

Share Document