Optimization of Pin-Fin Heat Sinks Using the Two Medium Anisotropic Porous Model

Author(s):  
Seo Young Kim ◽  
Andrey V. Kuznetsov

A numerical study has been carried out to optimize the thermal performance of a pin-fin heat sink. A pin-fin heat sink placed horizontally in a channel is modeled as a hydraulically and thermally anisotropic porous medium. A uniform heat flux is prescribed at the bottom of the heat sink. Cold air is supplied from the top opening of the channel and exhausts to the channel outlet. Comprehensive numerical solutions are derived from the governing Navier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium (LTNE) model for the region of heat sink. Results from this study indicate that the anisotropy in permeability and solid-phase effective thermal conductivity changes substantially with the variation of porosity. The pin-fin heat sinks considered in the present study show an optimum porosity of 0.75<εopt<0.95 for maximum thermal dissipation depending on the flow and geometric conditions. Generally, a thick pin-fin displays a lower optimum porosity.

Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


2001 ◽  
Author(s):  
V. S. Travkin

Abstract The primary difficulty in semiconductor heat sink (and many other types of heat exchangers) research and design is not a lack of interest or money, but rather confusion with what being looked for and adequacy of the tools used for the search. As recently shown, there are few meaningful parameters (apart from sizes and weight) or physical characteristics of interest in semiconductor cooler design are local values. Even the maximum temperature of the base Tmax or semiconductor temperature are not local. In this work outlined the description in detail of arguments on how, and for what reasons, the measured data are to be simulated or measured and represented in a way that allows design goals to be formulated primarily with bulk physical characteristics. We demonstrate why studies of only averaged local integrated variables are not enough. Four sample semiconductor heat sinks of two morphologies (three samples of round pin fin and one sample of longitudinal rib fin sinks) were studied by different techniques and models. There were changes in by-pass values, external heat flux and flow rate. The results are depicted with using new parameters that better represent the needs of a design process as well as the usual parameters used in the past. Characteristics reported are the heat transfer rate in solid phase, relative fin effectiveness, and influence of only morphology features among others. Some suggestions for heat sink design are discussed.


Author(s):  
Ling Ling ◽  
Yanfeng Fan ◽  
Ibrahim Hassan

Higher heat flux is produced by Micro-Electro-Mechanical Systems (MEMS) because of their reduced size and increased clock speed. At the mean time, studies of non-uniform heating conditions which are more practical than uniform heating conditions are inadequate and needed urgently. Four nonuniform heating conditions are simulated in the paper. Three heat sinks with different widths of cross-linked channels locating above the center of hotspots are studied and compared to conventional straight microchannel heat sink. Half of the module geometry is chosen to be the computational domain. Two hotspots are placed at the bottom surface. The coolant is water, whose properties are dependent on temperature. Two inlet velocities, 0.5 m/s and 1 m/s, are tested for each heat sink. Temperature profile at the hotspots, pressure drop and total thermal resistance are selected as criteria of evaluating heat sink performance. All heat sinks have better performance when there is an upstream hotspot or the upstream hotspot is subjected to a higher heat flux. Cross-linked channel width of 0.5 mm has the best benefit to obtain better temperature uniformity without increasing the maximum temperature on the bottom surface.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. The sinks have the same base dimensions whereas the fin height and pitch vary. The fins have a constant square cross-section. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6.3 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights.


Author(s):  
J. P. Ramirez-Vazquez ◽  
A. Hernandez-Guerrero ◽  
J. L. Zuñiga-Cerroblanco ◽  
J. C. Rubio-Arana

This work presents a numerical study of the thermal and hydrodynamic behavior of a pin-fin heat sink where deflectors are placed along the flow of the coolant air; the effect of the arrangement of the fins and deflectors in the global performance of the heat sink is investigated. The fin geometry analyzed is rectangular, and the arrangement of the fins is inline. The heat sink is placed in a channel in which air flows, and a constant heat flux is applied at the bottom wall of the heat sink with values equivalent to the heat fluxes generated by current electronic devices. Deflectors are placed in the top of the channel in order to drive the air flow into the front and end of the heat sink. The results for the Nusselt number and for the pressure drop along the heat sink are reported. The best dimension of deflectors and pitch for the arrangement based on the thermal and hydraulic performance is attained.


Author(s):  
Ali Kosar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

An experimental study on thermal-hydraulic performance of de-ionized water over a bank of shrouded NACA 66-021 hydrofoil micro pin fins with wetted perimeter of 1030-μm and chord thickness of 100 μm has been performed. Average heat transfer coefficients have been obtained over effective heat fluxes ranging from 4.0 to 308 W/cm2 and mass velocities from 134 to 6600 kg/m2s. The experimental data is reduced to the Nusselt numbers, Reynolds numbers, total thermal resistances, and friction factors in order to determine the thermal-hydraulic performance of the heat sink. It has been found that prodigious hydrodynamic improvement can be obtained with the hydrofoil-based micro pin fin heat sink compared to the circular pin fin device. Fluid flow over pin fin heat sinks comprised from hydrofoils yielded radically lower thermal resistances than circular pin fins for a similar pressure drop.


2015 ◽  
Vol 1105 ◽  
pp. 253-258 ◽  
Author(s):  
Weerapun Duangthongsuk ◽  
Somchai Wongwises

This research presents an experimental investigation on the heat transfer performance and pressure drop characteristics of a heat sink with miniature square pin fin structure using nanofluids as coolant. ZnO-water nanofluids with particle concentrations of 0.2, 0.4 and 0.6 vol.% are used as working fluid and then compared with the data for water-cooled heat sink. Heat sink made from aluminum material with dimension around 28 x 33 x 25 mm (width x length x thickness). The heat transfer area and hydraulic diameter of the each flow channel is designed at 1,565 mm2and 1.2 mm respectively. Uniform heat flux at the bottom of heat sink is achieved using an electric heater. The experimental data illustrate that the thermal performance of heat sink using nanofluids as coolant is average 14% higher than that of the water-cooled heat sink. For pressure drop, the data show that the pressure drop of nanofluids is a few percent larger than that of the water-cooled heat sink.


Sign in / Sign up

Export Citation Format

Share Document