Passive Damping Augmentation Using Macro-Fiber Composite Actuators

Author(s):  
Kazuhiko Adachi ◽  
Gyuhae Park ◽  
Daniel J. Inman

This paper aims at presenting the structural vibration-suppression capability of the recently developed Macro-Fiber Composite (MFC) actuator as a passive piezoelectric absorber using an inductive resonant shunt circuit. The resistance and inductance of the series RL shunt circuit are designed by the analogy with the single-degree-of-freedom mechanical damped vibration absorber and by using the maximum power transfer theorem of the electric network. Experimental test of a simple cantilevered beam demonstrates that the MFC actuator has excellent capability of improving the dynamic response of the beam as a piezoelectric damping system. The damping enhancement performance of the MFC actuator is superior to that of the conventional monolithic PZT actuator.

2022 ◽  
pp. 1-35
Author(s):  
Hongli Ji ◽  
Xiaoning Zhao ◽  
Ning Wang ◽  
Wei Huang ◽  
Jinhao Qiu ◽  
...  

Abstract A previously proposed planar axisymmetric dynamic vibration absorber (DVA), with embedded acoustic black hole (ABH) features, has been shown to suffer from the very selective coupling with the host structure, thus compromising its vibration reduction performance. To tackle the problem, an eccentric ABH-based circular DVA whose thickness profile is tailored according to a circumferential gradient variation is proposed in this paper. This new configuration preserves the ABH profile in the radial direction alongside a continuous variation along the circumferential direction and breaks the axisymmetry of the original DVA design at the same time. While the former permits the ABH features to fully play out in a continuous manner, the later entails a more effective coupling with the host structure. These salient properties have been demonstrated and confirmed both numerically and experimentally by examining a benchmark plate structure. For analyses, a coupling model embracing the host structure and the add-on DVAs is established which allows the calculation of the coupling coefficient, a vital quantity to guide the DVA design. Studies demonstrate the advantages of the proposed DVA over existing designs for the same given mass. The enriched structural coupling and the enhanced modal damping, arising from the eccentric and circumferentially graded ABH design, are shown to be the origin of such improvement. All in all, the physical process underpinning the dynamic absorber principle and waveguide absorber from the host structures is simultaneously consolidated, thus leading to superior broadband structural vibration suppression.


2021 ◽  
pp. 107754632098430
Author(s):  
Fan Yang ◽  
Ramin Sedaghati ◽  
Ebrahim Esmailzadeh

To date, considerable attention has been paid to the development of structural vibration suppression techniques. Among all vibration suppression devices and techniques, the tuned mass damper is one of the most promising technologies due to its mechanical simplicity, cost-effectiveness, and reliable operation. In this article, a critical review of the structural vibration suppression using tuned mass damper technology will be presented mainly focused on the following four categories: (1) tuned mass damper technology and its modifications, (2) tuned mass damper technology in discrete and continuous structures (mathematical modeling), (3) optimization procedure to obtain the optimally designed tuned mass damper system, and (4) active tuned mass damper and semi-active tuned mass damper with the practical realization of the tuned mass damper technologies.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Yukio Ishida ◽  
Masaki Sumi

An electromagnetic actuator has the property to convert mechanical energy to electrical energy and vice versa. In this study, an electromagnetic resonant shunt damper, consisting of a voice coil motor with an electric resonant shunt circuit, is proposed. The optimal design of the shunt circuit is obtained theoretically for this electromagnetic resonant shunt damper. Furthermore, the effects of parameter errors of the elements of the electromagnetic resonant shunt damper are also investigated. The applicability of the theoretical findings for the proposed damper is justified by the experimental analysis.


2015 ◽  
Vol 12 (5) ◽  
pp. 925-947 ◽  
Author(s):  
Eduardo Padoin ◽  
Jun Sergio Ono Fonseca ◽  
Eduardo André Perondi ◽  
Odair Menuzzi

Sign in / Sign up

Export Citation Format

Share Document